Ventromedial hypothalamic nucleus neuronal nitric oxide knockdown effects on GABAergic neuron metabolic sensor and transmitter marker gene expression in the male rat.

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Sagor C Roy, Madhu Babu Pasula, Subash Sapkota, Karen P Briski
{"title":"Ventromedial hypothalamic nucleus neuronal nitric oxide knockdown effects on GABAergic neuron metabolic sensor and transmitter marker gene expression in the male rat.","authors":"Sagor C Roy, Madhu Babu Pasula, Subash Sapkota, Karen P Briski","doi":"10.1186/s12868-025-00940-0","DOIUrl":null,"url":null,"abstract":"<p><p>The diffusible gas nitric oxide (NO) and amino acid γ-gamma-aminobutyric acid (GABA) exert contrary effects on glucose counterregulation in the male rat, but how these neurochemical signals integrate within ventromedial hypothalamic nucleus (VMN) neural circuitries remains unclear. Female rat dorsomedial (VMNdm) and ventrolateral (VMNvl) GABAergic neurons express neuronal nitric oxide synthase (nNOS) mRNA; notably these subpopulations exhibit dissimilar nNOS transcriptional responses to insulin-induced hypoglycemia (IIH). Here, nNOS gene knockdown tools were used to examine whether one or both VMN GABA neuron groups may be a target for nitrergic control of basal and hypoglycemic counterregulatory hormone secretion in the male. Data show that VMN nNOS gene knockdown respectively up- or down-regulated counterregulatory hormone profiles in eu- versus hypoglycemic male rats. Single-cell multiplex qPCR analysis of laser-catapult-microdissected GABA neurons showed that IIH elevated nNOS gene expression in GABA neurons from each VMN division, yet nNOS siRNA pretreatment attenuated distinctive IIH-associated transmitter marker gene expression patterns in VMNdm versus VMNvl GABAergic neurons. nNOS gene silencing had similar effects on glucokinase and glucose transporter gene responses to IIH in each GABA neuron subpopulation but elicited division-specific effects on mRNA encoding 5-AMP-activated protein kinase (AMPK) alpha/catalytic subunits and the lactate membrane receptor GPR81/HCAR1. Current findings provide original evidence that VMN NO may impose bi-directional, glucose status-contingent control of counterregulatory hormone outflow in the male rat. Data moreover imply that during IIH, NO may control distinctive sources of metabolic sensory regulatory stimuli in VMNdm versus VMNvl GABA neurons and may shape unique counterregulation-controlling neurochemical transmission by each cell population.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"26 1","pages":"14"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-025-00940-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The diffusible gas nitric oxide (NO) and amino acid γ-gamma-aminobutyric acid (GABA) exert contrary effects on glucose counterregulation in the male rat, but how these neurochemical signals integrate within ventromedial hypothalamic nucleus (VMN) neural circuitries remains unclear. Female rat dorsomedial (VMNdm) and ventrolateral (VMNvl) GABAergic neurons express neuronal nitric oxide synthase (nNOS) mRNA; notably these subpopulations exhibit dissimilar nNOS transcriptional responses to insulin-induced hypoglycemia (IIH). Here, nNOS gene knockdown tools were used to examine whether one or both VMN GABA neuron groups may be a target for nitrergic control of basal and hypoglycemic counterregulatory hormone secretion in the male. Data show that VMN nNOS gene knockdown respectively up- or down-regulated counterregulatory hormone profiles in eu- versus hypoglycemic male rats. Single-cell multiplex qPCR analysis of laser-catapult-microdissected GABA neurons showed that IIH elevated nNOS gene expression in GABA neurons from each VMN division, yet nNOS siRNA pretreatment attenuated distinctive IIH-associated transmitter marker gene expression patterns in VMNdm versus VMNvl GABAergic neurons. nNOS gene silencing had similar effects on glucokinase and glucose transporter gene responses to IIH in each GABA neuron subpopulation but elicited division-specific effects on mRNA encoding 5-AMP-activated protein kinase (AMPK) alpha/catalytic subunits and the lactate membrane receptor GPR81/HCAR1. Current findings provide original evidence that VMN NO may impose bi-directional, glucose status-contingent control of counterregulatory hormone outflow in the male rat. Data moreover imply that during IIH, NO may control distinctive sources of metabolic sensory regulatory stimuli in VMNdm versus VMNvl GABA neurons and may shape unique counterregulation-controlling neurochemical transmission by each cell population.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Neuroscience
BMC Neuroscience 医学-神经科学
CiteScore
3.90
自引率
0.00%
发文量
64
审稿时长
16 months
期刊介绍: BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信