Transient Lymphatic Remodeling Follows Sub-Ablative High-Frequency Irreversible Electroporation Therapy in a 4T1 Murine Model.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Savieay Esparza, Edward Jacobs, Jennifer H Hammel, Sharon K Michelhaugh, Nastaran Alinezhadbalalami, Margaret Nagai-Singer, Khan Mohammad Imran, Rafael V Davalos, Irving C Allen, Scott S Verbridge, Jennifer M Munson
{"title":"Transient Lymphatic Remodeling Follows Sub-Ablative High-Frequency Irreversible Electroporation Therapy in a 4T1 Murine Model.","authors":"Savieay Esparza, Edward Jacobs, Jennifer H Hammel, Sharon K Michelhaugh, Nastaran Alinezhadbalalami, Margaret Nagai-Singer, Khan Mohammad Imran, Rafael V Davalos, Irving C Allen, Scott S Verbridge, Jennifer M Munson","doi":"10.1007/s10439-024-03674-y","DOIUrl":null,"url":null,"abstract":"<p><p>High-frequency irreversible electroporation (H-FIRE) is a minimally invasive local ablation therapy known to activate the adaptive immune system and reprogram the tumor microenvironment. Its predecessor, irreversible electroporation (IRE), transiently increases microvascular density and immune cell infiltration within the surviving non-ablated and non-necrotic tumor region, also known as the viable tumor region. However, the impact of pulse electric field therapies on lymphatic vessels, crucial for T-cell fate and maturation, remains unclear. This study investigates how sub-ablative H-FIRE (SA-HFIRE) affects lymphatic and blood microvascular remodeling in the 4T1 mammary mouse model. We conducted a temporal and spatial analysis to evaluate vascular changes in the viable tumor, peritumoral fat pad, and tumor-draining lymph node post-treatment. Histological examination showed a transient increase in blood vessel density on Day 1 post-treatment, followed by a spike in lymphatic vessel density in the viable tumor region on Day 3 post-treatment, increased lymphatic vessel density in the peripheral fat pad, and minimal remodeling of the tumor-draining lymph node within 3 days following treatment. Gene expression analysis indicated elevated levels of CCL21 and CXCL2 on Day 1 post-treatment, while VEGFA and VEGFC did not appear to contribute to vascular remodeling. Likewise, CCL21 protein content in tumor-draining axillary lymph nodes correlated with gene expression data from the viable tumor region. These findings suggest a dynamic shift in lymphatic and blood microvascular structures post-SA-HFIRE, potentially enhancing the adaptive immune response through CCL21-mediated lymphatic homing and subsequent lymph node microvascular remodeling. Future work will assess the immune and transport function of the microvasculature to inform experiments aimed at the application of adjuvant therapies during scenarios of tumor partial ablation.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03674-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency irreversible electroporation (H-FIRE) is a minimally invasive local ablation therapy known to activate the adaptive immune system and reprogram the tumor microenvironment. Its predecessor, irreversible electroporation (IRE), transiently increases microvascular density and immune cell infiltration within the surviving non-ablated and non-necrotic tumor region, also known as the viable tumor region. However, the impact of pulse electric field therapies on lymphatic vessels, crucial for T-cell fate and maturation, remains unclear. This study investigates how sub-ablative H-FIRE (SA-HFIRE) affects lymphatic and blood microvascular remodeling in the 4T1 mammary mouse model. We conducted a temporal and spatial analysis to evaluate vascular changes in the viable tumor, peritumoral fat pad, and tumor-draining lymph node post-treatment. Histological examination showed a transient increase in blood vessel density on Day 1 post-treatment, followed by a spike in lymphatic vessel density in the viable tumor region on Day 3 post-treatment, increased lymphatic vessel density in the peripheral fat pad, and minimal remodeling of the tumor-draining lymph node within 3 days following treatment. Gene expression analysis indicated elevated levels of CCL21 and CXCL2 on Day 1 post-treatment, while VEGFA and VEGFC did not appear to contribute to vascular remodeling. Likewise, CCL21 protein content in tumor-draining axillary lymph nodes correlated with gene expression data from the viable tumor region. These findings suggest a dynamic shift in lymphatic and blood microvascular structures post-SA-HFIRE, potentially enhancing the adaptive immune response through CCL21-mediated lymphatic homing and subsequent lymph node microvascular remodeling. Future work will assess the immune and transport function of the microvasculature to inform experiments aimed at the application of adjuvant therapies during scenarios of tumor partial ablation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信