{"title":"Mechanistic study of α-mangostin derivatives as potent α-glucosidase inhibitors.","authors":"Kamonpan Sanachai, Supakarn Chamni, Bodee Nutho, Saranyu Khammuang, Juthamat Ratha, Kiattawee Choowongkomon, Ploenthip Puthongking","doi":"10.1007/s11030-025-11141-6","DOIUrl":null,"url":null,"abstract":"<p><p>α-Glucosidase inhibitors (AGIs) are pharmacological agents commonly used to manage postprandial hyperglycemia associated with type 2 diabetes mellitus (T2DM). Developing novel, potent AGIs remains a significant area of research. In this study, we investigated a series of derivatives of the natural product from α-mangostin as potential AGIs. A combined experimental and computational approach was employed to characterize promising compounds with potent α-glucosidase inhibitory activity. We found that α-mangostin (AM) and its derivatives (AM1 - 3) exhibited micromolar range α-glucosidase inhibition (IC<sub>50</sub> ranging from 15.14 to 67.81 µM), surpassing the known drug acarbose (IC<sub>50</sub> of 197.09 µM). Among the derivatives, AM1 exhibited the most promising α-glucosidase inhibition, displaying competitive inhibition kinetics with a K<sub>i</sub> value of 47.04 µM. Molecular docking and molecular dynamics (MD) simulations provided mechanistic insights into the binding interactions between AM1 and the α-glucosidase active site. AM1 was observed to form hydrogen bonds and hydrophobic interactions with key amino acid residues within the enzyme's active site. The introduction of amine groups in compound AM1 enhanced activity compared to AM, the parent compound. This study highlights the potential of α-mangostin derivatives as potent AGIs. The identified lead compound, AM1, warrants further investigation to assess its efficacy and safety in managing T2DM.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11141-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
α-Glucosidase inhibitors (AGIs) are pharmacological agents commonly used to manage postprandial hyperglycemia associated with type 2 diabetes mellitus (T2DM). Developing novel, potent AGIs remains a significant area of research. In this study, we investigated a series of derivatives of the natural product from α-mangostin as potential AGIs. A combined experimental and computational approach was employed to characterize promising compounds with potent α-glucosidase inhibitory activity. We found that α-mangostin (AM) and its derivatives (AM1 - 3) exhibited micromolar range α-glucosidase inhibition (IC50 ranging from 15.14 to 67.81 µM), surpassing the known drug acarbose (IC50 of 197.09 µM). Among the derivatives, AM1 exhibited the most promising α-glucosidase inhibition, displaying competitive inhibition kinetics with a Ki value of 47.04 µM. Molecular docking and molecular dynamics (MD) simulations provided mechanistic insights into the binding interactions between AM1 and the α-glucosidase active site. AM1 was observed to form hydrogen bonds and hydrophobic interactions with key amino acid residues within the enzyme's active site. The introduction of amine groups in compound AM1 enhanced activity compared to AM, the parent compound. This study highlights the potential of α-mangostin derivatives as potent AGIs. The identified lead compound, AM1, warrants further investigation to assess its efficacy and safety in managing T2DM.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;