Overcoming Ploidy Barriers: The Role of Triploid Bridges in the Genetic Introgression of Cardamine amara

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
P. Bartolić, A. Voltrová, L. Macková, G. Šrámková, M. Šlenker, T. Mandáková, N. Padilla García, K. Marhold, F. Kolář
{"title":"Overcoming Ploidy Barriers: The Role of Triploid Bridges in the Genetic Introgression of Cardamine amara","authors":"P. Bartolić,&nbsp;A. Voltrová,&nbsp;L. Macková,&nbsp;G. Šrámková,&nbsp;M. Šlenker,&nbsp;T. Mandáková,&nbsp;N. Padilla García,&nbsp;K. Marhold,&nbsp;F. Kolář","doi":"10.1111/mec.17702","DOIUrl":null,"url":null,"abstract":"<p>Polyploidisation is a significant reproductive barrier, yet genetic evidence indicates that interploidy admixture is more common than previously thought. Theoretical models and controlled crosses support the ‘triploid bridge’ hypothesis, proposing that hybrids of intermediate ploidy facilitate gene flow. However, comprehensive evidence combining experimental and genetic data from natural mixed-ploidy species is missing. Here, we investigated the rates and directionality of gene flow within a diploid-autotetraploid contact zone of <i>Cardamine amara</i>, a species with abundant natural triploids. We cytotyped over 400 individuals in the field, conducted reciprocal interploidy crosses, and inferred gene flow based on genome-wide sequencing of 84 individuals. Triploids represent a conspicuous entity in mixed-ploidy populations (5%), yet only part of them arose through interploidy hybridisation. Despite being rarely formed, triploid hybrids can backcross with their parental cytotypes, producing viable offspring that are often euploid (in 42% of cases). In correspondence, D-statistics and coalescent simulations documented a significant genome-wide signal of bidirectional gene flow in sympatric but not allopatric populations. Triploids, though rare, thus seem to play a key role in overcoming polyploidy-related reproductive barriers in <i>C. amara</i>. In sum, we present integrative evidence for interploidy gene flow mediated by a triploid bridge in natural populations.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 7","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17702","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17702","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyploidisation is a significant reproductive barrier, yet genetic evidence indicates that interploidy admixture is more common than previously thought. Theoretical models and controlled crosses support the ‘triploid bridge’ hypothesis, proposing that hybrids of intermediate ploidy facilitate gene flow. However, comprehensive evidence combining experimental and genetic data from natural mixed-ploidy species is missing. Here, we investigated the rates and directionality of gene flow within a diploid-autotetraploid contact zone of Cardamine amara, a species with abundant natural triploids. We cytotyped over 400 individuals in the field, conducted reciprocal interploidy crosses, and inferred gene flow based on genome-wide sequencing of 84 individuals. Triploids represent a conspicuous entity in mixed-ploidy populations (5%), yet only part of them arose through interploidy hybridisation. Despite being rarely formed, triploid hybrids can backcross with their parental cytotypes, producing viable offspring that are often euploid (in 42% of cases). In correspondence, D-statistics and coalescent simulations documented a significant genome-wide signal of bidirectional gene flow in sympatric but not allopatric populations. Triploids, though rare, thus seem to play a key role in overcoming polyploidy-related reproductive barriers in C. amara. In sum, we present integrative evidence for interploidy gene flow mediated by a triploid bridge in natural populations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信