Bioorthogonal Chemical Engineering of rAAV Capsid: Advancing Gene Therapy Targeting Using Proteins.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Maia Marchand, Sébastien Depienne, Mohammed Bouzelha, Karine Pavageau, Roxane Peumery, Denis Loquet, Dimitri Alvarez-Dorta, Mickaël Guilbaud, Mikaël Croyal, Aurélien Dupont, Oumeya Adjali, Sébastien G Gouin, David Deniaud, Mathieu Mével
{"title":"Bioorthogonal Chemical Engineering of rAAV Capsid: Advancing Gene Therapy Targeting Using Proteins.","authors":"Maia Marchand, Sébastien Depienne, Mohammed Bouzelha, Karine Pavageau, Roxane Peumery, Denis Loquet, Dimitri Alvarez-Dorta, Mickaël Guilbaud, Mikaël Croyal, Aurélien Dupont, Oumeya Adjali, Sébastien G Gouin, David Deniaud, Mathieu Mével","doi":"10.1021/acs.bioconjchem.4c00580","DOIUrl":null,"url":null,"abstract":"<p><p>We report the chemical conjugation of a recombinant Adeno Associated Virus (rAAV) capsid with various functionalities, including proteins, using a bioorthogonal strategy. rAAVs were azido-coated or dibenzylcyclooctyne (DBCO)-coated by chemically modifying lysine or tyrosine residues. Lysine residues were modified using a phenyl isothiocyanate anchor, and tyrosine residues using either an aryl diazonium salt or a <i>N</i>-methyl luminol derivative. We demonstrate anchor-dependent labeling levels, as observed with biochemical assays and mass spectrometry. Strain-promoted azide-alkyne cycloaddition (SPAAC) was then implemented and evaluated on the rAAV to append functionalities such as fluorescein, biotin, and carbohydrates to the azido-coated capsids. We confirmed the efficiency of the bioorthogonal reaction and observed a stronger reactivity with dibenzylcyclooctyne (DBCO) compared to bicyclononyne (BCN). The optimized SPAAC reaction was finally used to label the viral vectors with two relevant nanobodies targeting specific immune cell receptors (CD62L and CD45). <i>In vitro</i> transduction assays conducted with one rAAV-nanobody conjugate demonstrated the promising targeting properties of these chemically modified vectors. Thus, we anticipate that this strategy will positively impact the field of rAAV capsid engineering and contribute in tissue-specific targeting for the optimization of gene therapy treatments.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00580","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We report the chemical conjugation of a recombinant Adeno Associated Virus (rAAV) capsid with various functionalities, including proteins, using a bioorthogonal strategy. rAAVs were azido-coated or dibenzylcyclooctyne (DBCO)-coated by chemically modifying lysine or tyrosine residues. Lysine residues were modified using a phenyl isothiocyanate anchor, and tyrosine residues using either an aryl diazonium salt or a N-methyl luminol derivative. We demonstrate anchor-dependent labeling levels, as observed with biochemical assays and mass spectrometry. Strain-promoted azide-alkyne cycloaddition (SPAAC) was then implemented and evaluated on the rAAV to append functionalities such as fluorescein, biotin, and carbohydrates to the azido-coated capsids. We confirmed the efficiency of the bioorthogonal reaction and observed a stronger reactivity with dibenzylcyclooctyne (DBCO) compared to bicyclononyne (BCN). The optimized SPAAC reaction was finally used to label the viral vectors with two relevant nanobodies targeting specific immune cell receptors (CD62L and CD45). In vitro transduction assays conducted with one rAAV-nanobody conjugate demonstrated the promising targeting properties of these chemically modified vectors. Thus, we anticipate that this strategy will positively impact the field of rAAV capsid engineering and contribute in tissue-specific targeting for the optimization of gene therapy treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信