High-Performance Alginate-Poly(ethylene oxide)-Based Solid Polymer Electrolyte.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-03-05 Epub Date: 2025-02-24 DOI:10.1021/acsami.4c22242
Jie Liu, Hao Xu, Hena Ming, Peng Zhao, Shenglong Shang, Shuai Liu
{"title":"High-Performance Alginate-Poly(ethylene oxide)-Based Solid Polymer Electrolyte.","authors":"Jie Liu, Hao Xu, Hena Ming, Peng Zhao, Shenglong Shang, Shuai Liu","doi":"10.1021/acsami.4c22242","DOIUrl":null,"url":null,"abstract":"<p><p>Solid polymer electrolytes (SPEs) have gained tremendous attention because they are expected to solve the safety problems caused by liquid electrolytes. However, the low ion-transport capacity, insufficient mechanical strength, and unsatisfying flame-retardant properties greatly limit their further application. Here, we designed a poly(ethylene oxide) (PEO)-based SPE by introducing a calcium alginate (CA) nanofiber membrane obtained by electrospinning as a framework. The abundant C═O and -OH groups in the CA macromolecules not only effectively weakened the coordination environment of lithium ions (Li<sup>+</sup>) but also promoted the dissociation of LiTFSI, assisting in the transfer of Li<sup>+</sup> along PEO polymer chains and providing an effective pathway for Li<sup>+</sup> transfer. The introduction of calcium ions (Ca<sup>+</sup>) during the cross-linking process improved the flame-retardant property of the SPE. The obtained SPE exhibited a high ion conductivity (3.86 × 10<sup>-4</sup> S cm<sup>-1</sup>, 30 °C), excellent mechanical strength (2.01 MPa), and a wide electrochemical window (5.32 V). The assembled lithium-symmetric battery could undergo stable lithium plating/stripping for 3000 h at 30 °C. Meanwhile, LiFePO<sub>4</sub> (LFP)/Li all-solid-state lithium metal battery showed excellent cycle stability over 300 cycles with a high discharge capacity (141.2 mAh g<sup>-1</sup>) and retention rate (92.5%) at 0.3 and 30 °C.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"14073-14084"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22242","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid polymer electrolytes (SPEs) have gained tremendous attention because they are expected to solve the safety problems caused by liquid electrolytes. However, the low ion-transport capacity, insufficient mechanical strength, and unsatisfying flame-retardant properties greatly limit their further application. Here, we designed a poly(ethylene oxide) (PEO)-based SPE by introducing a calcium alginate (CA) nanofiber membrane obtained by electrospinning as a framework. The abundant C═O and -OH groups in the CA macromolecules not only effectively weakened the coordination environment of lithium ions (Li+) but also promoted the dissociation of LiTFSI, assisting in the transfer of Li+ along PEO polymer chains and providing an effective pathway for Li+ transfer. The introduction of calcium ions (Ca+) during the cross-linking process improved the flame-retardant property of the SPE. The obtained SPE exhibited a high ion conductivity (3.86 × 10-4 S cm-1, 30 °C), excellent mechanical strength (2.01 MPa), and a wide electrochemical window (5.32 V). The assembled lithium-symmetric battery could undergo stable lithium plating/stripping for 3000 h at 30 °C. Meanwhile, LiFePO4 (LFP)/Li all-solid-state lithium metal battery showed excellent cycle stability over 300 cycles with a high discharge capacity (141.2 mAh g-1) and retention rate (92.5%) at 0.3 and 30 °C.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信