A linearly programmable strategy for polymer elastomer mechanics.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dichang Xue, Xing Su, Jin Xu, Xiaodong Li, Hao Jiang, Lichen Zhang, Zichen Bai, Ruibin Wang, Zitong Deng, Lixiang Zhu, Zhengnan Su, Meishuai Zou
{"title":"A linearly programmable strategy for polymer elastomer mechanics.","authors":"Dichang Xue, Xing Su, Jin Xu, Xiaodong Li, Hao Jiang, Lichen Zhang, Zichen Bai, Ruibin Wang, Zitong Deng, Lixiang Zhu, Zhengnan Su, Meishuai Zou","doi":"10.1039/d5mh00220f","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical properties of polymer elastomer materials, such as strength and ductility, play important roles in a wide range of applications, including the carrying of major equipment and the construction of infrastructure. However, owing to the widespread disordered physicochemical bonding and unpredictable internal phase separation phenomenon, traditional materials show a complex nonlinear correlation between the material structure and its performance, which makes it difficult to accurately adapt to the performance requirements of various specific application scenarios. In view of the above challenges, this paper innovatively proposes a strategy to achieve linear programmability in the mechanical properties of polymer elastomer materials. Instead of increasing the entropy value of the material, which may be brought about by the traditional physical composite method, this strategy adopts a unique path of introducing special dynamic chain segments (AlPUs). This innovative design leads to a highly ordered microscopic hydrogen bonding arrangement within the elastomer, which effectively reduces the free volume within the material, thus bringing the mechanical response of the material closer to the ideal state. Furthermore, by fine-tuning the content of material components, we are able to achieve linear control of key mechanical indexes, such as tensile strength and elongation at break, which is a significant advantage in terms of precision, range of adjustment, and versatility. The successful implementation of this work opens up a new way toward logical, fine and intelligent design and preparation of polymer materials, providing a solid materials science foundation and unlimited possibilities to promote technological innovation and development in the field of future major equipment and infrastructure.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh00220f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical properties of polymer elastomer materials, such as strength and ductility, play important roles in a wide range of applications, including the carrying of major equipment and the construction of infrastructure. However, owing to the widespread disordered physicochemical bonding and unpredictable internal phase separation phenomenon, traditional materials show a complex nonlinear correlation between the material structure and its performance, which makes it difficult to accurately adapt to the performance requirements of various specific application scenarios. In view of the above challenges, this paper innovatively proposes a strategy to achieve linear programmability in the mechanical properties of polymer elastomer materials. Instead of increasing the entropy value of the material, which may be brought about by the traditional physical composite method, this strategy adopts a unique path of introducing special dynamic chain segments (AlPUs). This innovative design leads to a highly ordered microscopic hydrogen bonding arrangement within the elastomer, which effectively reduces the free volume within the material, thus bringing the mechanical response of the material closer to the ideal state. Furthermore, by fine-tuning the content of material components, we are able to achieve linear control of key mechanical indexes, such as tensile strength and elongation at break, which is a significant advantage in terms of precision, range of adjustment, and versatility. The successful implementation of this work opens up a new way toward logical, fine and intelligent design and preparation of polymer materials, providing a solid materials science foundation and unlimited possibilities to promote technological innovation and development in the field of future major equipment and infrastructure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信