From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Antreas Kantaros, Florian Ion Tiberiu Petrescu, Theodore Ganetsos
{"title":"From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare.","authors":"Antreas Kantaros, Florian Ion Tiberiu Petrescu, Theodore Ganetsos","doi":"10.3390/biomimetics10020125","DOIUrl":null,"url":null,"abstract":"<p><p>The sector of 4D printing represents a new frontier in additive manufacturing that allows for a material's capability to adapt and respond to various stimuli, such as thermal transitions, humidity, and pH levels. The adaptability of such a material has great potential in healthcare applications, especially in designing personalized and responsive medical devices. This article looks into the revolutionary potential of healthcare applications of 4D printing, referencing applications in self-repairable implants, smart stents, personalized drug delivery systems, and response-based prosthetic devices. The advances in 3D printing have created a platform for such innovations to take place, while the material properties unique to 4D printing allow new methods of tackling existing health issues. However, the large-scale application of 4D printing in medicine is currently hampered by material limitations, regulation challenges, and financial challenges. In spite of these challenges, ongoing advances in technologies, combined with artificial intelligence and machine learning, provide the potential to surpass such challenges, hence improving the precision, efficacy, and personalization of medical devices. This work outlines existing applications, looks at potential areas of application in the future, and analyzes potential applications of 4D printing contributing to healthcare, recognizing challenges that need to be overcome in order to unlock its full potential.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020125","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The sector of 4D printing represents a new frontier in additive manufacturing that allows for a material's capability to adapt and respond to various stimuli, such as thermal transitions, humidity, and pH levels. The adaptability of such a material has great potential in healthcare applications, especially in designing personalized and responsive medical devices. This article looks into the revolutionary potential of healthcare applications of 4D printing, referencing applications in self-repairable implants, smart stents, personalized drug delivery systems, and response-based prosthetic devices. The advances in 3D printing have created a platform for such innovations to take place, while the material properties unique to 4D printing allow new methods of tackling existing health issues. However, the large-scale application of 4D printing in medicine is currently hampered by material limitations, regulation challenges, and financial challenges. In spite of these challenges, ongoing advances in technologies, combined with artificial intelligence and machine learning, provide the potential to surpass such challenges, hence improving the precision, efficacy, and personalization of medical devices. This work outlines existing applications, looks at potential areas of application in the future, and analyzes potential applications of 4D printing contributing to healthcare, recognizing challenges that need to be overcome in order to unlock its full potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信