Recent trends in the development ofin vitro3D kidney models.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Gaddam Kiranmai, Shibu Chameettachal, Yeleswarapu Sriya, Sarah Duin, Anja Lode, Michael Gelinsky, Ashwini Rahul Akkineni, Falguni Pati
{"title":"Recent trends in the development of<i>in vitro</i>3D kidney models.","authors":"Gaddam Kiranmai, Shibu Chameettachal, Yeleswarapu Sriya, Sarah Duin, Anja Lode, Michael Gelinsky, Ashwini Rahul Akkineni, Falguni Pati","doi":"10.1088/1758-5090/adb999","DOIUrl":null,"url":null,"abstract":"<p><p>The kidneys are vital for maintaining bodily homeostasis and are susceptible to various diseases that disrupt their function. Traditionally, research on kidney diseases has relied on animal models and simplistic two-dimensional cell cultures, which do not fully replicate human tissue pathology. To address this, recent advances focus on developing advanced 3D biomimetic<i>in vitro</i>models using human-derived cells. These models mimic healthy and diseased kidney tissues with specificity, replicating key elements like glomerular and tubular structures through tissue engineering. By closely mimicking human physiology, they provide a promising platform for studying renal disorders, drug-induced nephrotoxicity, and evaluating new therapies. However, the challenges include optimizing scalability, reproducibility, and long-term stability to enhance reliability in research and clinical applications. This review highlights the transformative potential of 3D biomimetic<i>in vitro</i>kidney models in advancing biomedical research and clinical applications. By focusing on human-specific cell cultures and tissue engineering techniques, these models aim to overcome the limitations of conventional animal models and simplistic 2D cell cultures. The review discusses in detail the various types of biomimetic kidney models currently under development, their specific applications, and the innovative approaches used to construct them. It also addresses the challenges and limitations associated with these models for their widespread adoption and reliability in research settings.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adb999","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The kidneys are vital for maintaining bodily homeostasis and are susceptible to various diseases that disrupt their function. Traditionally, research on kidney diseases has relied on animal models and simplistic two-dimensional cell cultures, which do not fully replicate human tissue pathology. To address this, recent advances focus on developing advanced 3D biomimeticin vitromodels using human-derived cells. These models mimic healthy and diseased kidney tissues with specificity, replicating key elements like glomerular and tubular structures through tissue engineering. By closely mimicking human physiology, they provide a promising platform for studying renal disorders, drug-induced nephrotoxicity, and evaluating new therapies. However, the challenges include optimizing scalability, reproducibility, and long-term stability to enhance reliability in research and clinical applications. This review highlights the transformative potential of 3D biomimeticin vitrokidney models in advancing biomedical research and clinical applications. By focusing on human-specific cell cultures and tissue engineering techniques, these models aim to overcome the limitations of conventional animal models and simplistic 2D cell cultures. The review discusses in detail the various types of biomimetic kidney models currently under development, their specific applications, and the innovative approaches used to construct them. It also addresses the challenges and limitations associated with these models for their widespread adoption and reliability in research settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信