{"title":"Effect of π-Linkages in Covalent Organic Framework-Catalyzed Light-Harvesting Thioesterification Reaction.","authors":"Ayan Jati, Durba Chanda, Biplab Maji","doi":"10.1021/acsami.4c22195","DOIUrl":null,"url":null,"abstract":"<p><p>Covalent organic frameworks (COFs) serve as an outstanding platform for heterogeneous photocatalysis. We synthesized two analogous pyrene-based two-dimensional COFs with π-conjugated networks, one linked by C═N bonds and the other by C═C bonds, through Schiff base and Knoevenagel condensation reactions, respectively. We investigated the impact of these linkages on the photocatalytic activity of these COFs, using visible-light-mediated thioesterification as a model reaction. It was found that the olefin-linkage COF outperformed the imine-linkage COF as a photocatalyst. The developed protocol demonstrated a broad substrate scope, including 35 diverse carboxylic acids, 14 drug molecules, and several disulfide coupling partners, achieving up to a 95% yield of thioesters. The practical utility of this strategy is further demonstrated by its successful application in gram-scale reactions. The photocatalyst is robust and was successfully reused for multiple cycles without any loss of catalytic activity. The COF backbone facilitated enhanced electron transfer upon light irradiation, enabling the cross-coupling of carboxylic acid and disulfide through a reductive photocatalytic cycle.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"14047-14057"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22195","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) serve as an outstanding platform for heterogeneous photocatalysis. We synthesized two analogous pyrene-based two-dimensional COFs with π-conjugated networks, one linked by C═N bonds and the other by C═C bonds, through Schiff base and Knoevenagel condensation reactions, respectively. We investigated the impact of these linkages on the photocatalytic activity of these COFs, using visible-light-mediated thioesterification as a model reaction. It was found that the olefin-linkage COF outperformed the imine-linkage COF as a photocatalyst. The developed protocol demonstrated a broad substrate scope, including 35 diverse carboxylic acids, 14 drug molecules, and several disulfide coupling partners, achieving up to a 95% yield of thioesters. The practical utility of this strategy is further demonstrated by its successful application in gram-scale reactions. The photocatalyst is robust and was successfully reused for multiple cycles without any loss of catalytic activity. The COF backbone facilitated enhanced electron transfer upon light irradiation, enabling the cross-coupling of carboxylic acid and disulfide through a reductive photocatalytic cycle.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.