In Vivo Vascularization of Cell-Supplemented Spider Silk-Based Hydrogels in the Arteriovenous Loop Model.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Justus Osterloh, Stefanie Heltmann-Meyer, Vanessa T Trossmann, Aijia Cai, Yvonne Kulicke, Klara Terörde, Celena A Sörgel, Isabell Lang, Harald Wajant, Thomas Scheibel, Tobias Fey, Dominik Steiner, Andreas Arkudas, Raymund E Horch
{"title":"In Vivo Vascularization of Cell-Supplemented Spider Silk-Based Hydrogels in the Arteriovenous Loop Model.","authors":"Justus Osterloh, Stefanie Heltmann-Meyer, Vanessa T Trossmann, Aijia Cai, Yvonne Kulicke, Klara Terörde, Celena A Sörgel, Isabell Lang, Harald Wajant, Thomas Scheibel, Tobias Fey, Dominik Steiner, Andreas Arkudas, Raymund E Horch","doi":"10.3390/biomimetics10020117","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of reconstructive surgery in treating tissue defects is to achieve a stable reconstructive outcome while minimizing donor site morbidity. As a result, tissue engineering has emerged as a key focus in the pursuit of this goal. One approach is to create a tissue container that can be preconditioned and later transplanted into the defect area. The characteristics of the matrices used in the tissue container are critical to this approach's success. Matrices generated with recombinant, functionalized spider silk (eADF4(C16)-RGD) have been reported to be biocompatible and easy to vascularize. However, the effect of exogenously added proangiogenic cells, such as endothelial cells (T17b), on the vascularization process of matrices generated with this hydrogel in vivo has not been described yet. In this study, we implanted arteriovenous (AV) loop containers filled with a spider silk hydrogel consisting of an eADF4(C16)-RGD matrix and encapsulated, differentiated endothelial T17b cells producing the reporter protein TNFR2-Fc-Flag-GpL. The histological and µCT analyses revealed spontaneous angiogenesis and fibrovascular tissue formation in the container at 2 and 4 weeks post-implantation. The reporter protein was detected after 4 weeks. No severe immune response was observed. Altogether, this study demonstrates that cell-supplemented recombinant spider silk is a highly promising hydrogel to produce matrices for tissue engineering applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020117","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of reconstructive surgery in treating tissue defects is to achieve a stable reconstructive outcome while minimizing donor site morbidity. As a result, tissue engineering has emerged as a key focus in the pursuit of this goal. One approach is to create a tissue container that can be preconditioned and later transplanted into the defect area. The characteristics of the matrices used in the tissue container are critical to this approach's success. Matrices generated with recombinant, functionalized spider silk (eADF4(C16)-RGD) have been reported to be biocompatible and easy to vascularize. However, the effect of exogenously added proangiogenic cells, such as endothelial cells (T17b), on the vascularization process of matrices generated with this hydrogel in vivo has not been described yet. In this study, we implanted arteriovenous (AV) loop containers filled with a spider silk hydrogel consisting of an eADF4(C16)-RGD matrix and encapsulated, differentiated endothelial T17b cells producing the reporter protein TNFR2-Fc-Flag-GpL. The histological and µCT analyses revealed spontaneous angiogenesis and fibrovascular tissue formation in the container at 2 and 4 weeks post-implantation. The reporter protein was detected after 4 weeks. No severe immune response was observed. Altogether, this study demonstrates that cell-supplemented recombinant spider silk is a highly promising hydrogel to produce matrices for tissue engineering applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信