Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Jihyeon Ha, Sangin Park, Yaeeun Han, Laehyun Kim
{"title":"Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex.","authors":"Jihyeon Ha, Sangin Park, Yaeeun Han, Laehyun Kim","doi":"10.3390/biomimetics10020118","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interface (BCI)-based assistive technologies enable intuitive and efficient user interaction, significantly enhancing the independence and quality of life of elderly and disabled individuals. Although existing wet EEG-based systems report high accuracy, they suffer from limited practicality. This study presents a hybrid BCI system combining dry-type EEG-based flash visual-evoked potentials (FVEP) and pupillary light reflex (PLR) designed to control an LED-based meal-assist robot. The hybrid system integrates dry-type EEG and eyewear-type infrared cameras, addressing the preparation challenges of wet electrodes, while maintaining practical usability and high classification performance. Offline experiments demonstrated an average accuracy of 88.59% and an information transfer rate (ITR) of 18.23 bit/min across the four target classifications. Real-time implementation uses PLR triggers to initiate the meal cycle and EMG triggers to detect chewing, indicating the completion of the cycle. These features allow intuitive and efficient operation of the meal-assist robot. This study advances the BCI-based assistive technologies by introducing a hybrid system optimized for real-world applications. The successful integration of the FVEP and PLR in a meal-assisted robot demonstrates the potential for robust and user-friendly solutions that empower the users with autonomy and dignity in their daily activities.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interface (BCI)-based assistive technologies enable intuitive and efficient user interaction, significantly enhancing the independence and quality of life of elderly and disabled individuals. Although existing wet EEG-based systems report high accuracy, they suffer from limited practicality. This study presents a hybrid BCI system combining dry-type EEG-based flash visual-evoked potentials (FVEP) and pupillary light reflex (PLR) designed to control an LED-based meal-assist robot. The hybrid system integrates dry-type EEG and eyewear-type infrared cameras, addressing the preparation challenges of wet electrodes, while maintaining practical usability and high classification performance. Offline experiments demonstrated an average accuracy of 88.59% and an information transfer rate (ITR) of 18.23 bit/min across the four target classifications. Real-time implementation uses PLR triggers to initiate the meal cycle and EMG triggers to detect chewing, indicating the completion of the cycle. These features allow intuitive and efficient operation of the meal-assist robot. This study advances the BCI-based assistive technologies by introducing a hybrid system optimized for real-world applications. The successful integration of the FVEP and PLR in a meal-assisted robot demonstrates the potential for robust and user-friendly solutions that empower the users with autonomy and dignity in their daily activities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信