Yonghui Miao, Chenxiao Xu, Ye Zhang, Huapeng Zhou, Qian Xu
{"title":"OsMED25-OsWRKY78 Mediated Transcriptional Activation of OsGA20ox1 Positively Regulates Plant Height in Rice.","authors":"Yonghui Miao, Chenxiao Xu, Ye Zhang, Huapeng Zhou, Qian Xu","doi":"10.1111/pce.15441","DOIUrl":null,"url":null,"abstract":"<p><p>Plant height is a crucial agronomic trait affecting lodging resistance and yield. The mediator subunit, such as MED25, plays a crucial role in regulating plant growth and development. This study elucidated the mechanistic role of OsMED25, an integral subunit of the plant mediator transcriptional coactivator complex, in the regulation of plant height. Phenotypic results indicated a significant reduction in plant height in the OsMED25-RNAi line. Further analysis indicated that GA<sub>1</sub> and GA<sub>3</sub> levels were significantly reduced, and the expression of gibberellin biosynthesis-related genes OsGA20ox1, OsGA20ox2 and OsGA20ox8 was significantly downregulated. Additionally, multiple lines of evidence supported an interaction between OsMED25 and OsWRKY78. The oswrky78 mutants exhibited significantly reduced plant height, and molecular analysis demonstrated that OsWRKY78 directly binds to the promoter region of OsGA20ox1 to activate its expression. Intriguingly, we demonstrated that OsMED25 acted as a coactivator for OsWRKY78, enhancing the transcription of OsGA20ox1. This led to elevated GA levels, positively regulating plant height. In summary, these findings demonstrated that OsMED25 played a pivotal role in regulating plant height by modulating the expression of OsGA20ox1, thereby providing a potential strategy for genetic improvement in rice.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15441","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant height is a crucial agronomic trait affecting lodging resistance and yield. The mediator subunit, such as MED25, plays a crucial role in regulating plant growth and development. This study elucidated the mechanistic role of OsMED25, an integral subunit of the plant mediator transcriptional coactivator complex, in the regulation of plant height. Phenotypic results indicated a significant reduction in plant height in the OsMED25-RNAi line. Further analysis indicated that GA1 and GA3 levels were significantly reduced, and the expression of gibberellin biosynthesis-related genes OsGA20ox1, OsGA20ox2 and OsGA20ox8 was significantly downregulated. Additionally, multiple lines of evidence supported an interaction between OsMED25 and OsWRKY78. The oswrky78 mutants exhibited significantly reduced plant height, and molecular analysis demonstrated that OsWRKY78 directly binds to the promoter region of OsGA20ox1 to activate its expression. Intriguingly, we demonstrated that OsMED25 acted as a coactivator for OsWRKY78, enhancing the transcription of OsGA20ox1. This led to elevated GA levels, positively regulating plant height. In summary, these findings demonstrated that OsMED25 played a pivotal role in regulating plant height by modulating the expression of OsGA20ox1, thereby providing a potential strategy for genetic improvement in rice.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.