OsMED25-OsWRKY78 Mediated Transcriptional Activation of OsGA20ox1 Positively Regulates Plant Height in Rice.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Yonghui Miao, Chenxiao Xu, Ye Zhang, Huapeng Zhou, Qian Xu
{"title":"OsMED25-OsWRKY78 Mediated Transcriptional Activation of OsGA20ox1 Positively Regulates Plant Height in Rice.","authors":"Yonghui Miao, Chenxiao Xu, Ye Zhang, Huapeng Zhou, Qian Xu","doi":"10.1111/pce.15441","DOIUrl":null,"url":null,"abstract":"<p><p>Plant height is a crucial agronomic trait affecting lodging resistance and yield. The mediator subunit, such as MED25, plays a crucial role in regulating plant growth and development. This study elucidated the mechanistic role of OsMED25, an integral subunit of the plant mediator transcriptional coactivator complex, in the regulation of plant height. Phenotypic results indicated a significant reduction in plant height in the OsMED25-RNAi line. Further analysis indicated that GA<sub>1</sub> and GA<sub>3</sub> levels were significantly reduced, and the expression of gibberellin biosynthesis-related genes OsGA20ox1, OsGA20ox2 and OsGA20ox8 was significantly downregulated. Additionally, multiple lines of evidence supported an interaction between OsMED25 and OsWRKY78. The oswrky78 mutants exhibited significantly reduced plant height, and molecular analysis demonstrated that OsWRKY78 directly binds to the promoter region of OsGA20ox1 to activate its expression. Intriguingly, we demonstrated that OsMED25 acted as a coactivator for OsWRKY78, enhancing the transcription of OsGA20ox1. This led to elevated GA levels, positively regulating plant height. In summary, these findings demonstrated that OsMED25 played a pivotal role in regulating plant height by modulating the expression of OsGA20ox1, thereby providing a potential strategy for genetic improvement in rice.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15441","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant height is a crucial agronomic trait affecting lodging resistance and yield. The mediator subunit, such as MED25, plays a crucial role in regulating plant growth and development. This study elucidated the mechanistic role of OsMED25, an integral subunit of the plant mediator transcriptional coactivator complex, in the regulation of plant height. Phenotypic results indicated a significant reduction in plant height in the OsMED25-RNAi line. Further analysis indicated that GA1 and GA3 levels were significantly reduced, and the expression of gibberellin biosynthesis-related genes OsGA20ox1, OsGA20ox2 and OsGA20ox8 was significantly downregulated. Additionally, multiple lines of evidence supported an interaction between OsMED25 and OsWRKY78. The oswrky78 mutants exhibited significantly reduced plant height, and molecular analysis demonstrated that OsWRKY78 directly binds to the promoter region of OsGA20ox1 to activate its expression. Intriguingly, we demonstrated that OsMED25 acted as a coactivator for OsWRKY78, enhancing the transcription of OsGA20ox1. This led to elevated GA levels, positively regulating plant height. In summary, these findings demonstrated that OsMED25 played a pivotal role in regulating plant height by modulating the expression of OsGA20ox1, thereby providing a potential strategy for genetic improvement in rice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信