NanoDet Model-Based Tracking and Inspection of Net Cage Using ROV

IF 1.9 4区 农林科学 Q2 FISHERIES
Yinghao Wu, Yaoguang Wei, Hongchao Zhang
{"title":"NanoDet Model-Based Tracking and Inspection of Net Cage Using ROV","authors":"Yinghao Wu,&nbsp;Yaoguang Wei,&nbsp;Hongchao Zhang","doi":"10.1155/are/7715838","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Open sea cage culture has become a major trend in mariculture, with strong wind resistance, wave resistance, anti-current ability, high degree of intensification, breeding density, and high yield. However, damage to the cage triggers severe economic losses; hence, to adopt effective and timely measures in minimizing economic losses, it is crucial for farmers to identify and understand the damage to the cage without delay. Presently, the damage detection of nets is mainly achieved by the underwater operation of divers, which is highly risky, inefficient, expensive, and exhibits poor real-time performance. Here, a remote-operated vehicle (ROV)-based autonomous net detection method is proposed. The system comprises two parts: the first part is sonar image target detection based on NanoDet. The sonar constantly collects data in the front and middle parts of the ROV, and the trained NanoDet model is embedded into the ROV control end, with the actual output of the angle and distance information between the ROV and net. The second part is the control part of the robot. The ROV tracks the net coat based on the angle and distance information of the target detection. In addition, when there are obstacles in front of the ROV, or it is far away from the net, the D-STAR algorithm is adopted to realize local path planning. Experimental results indicate that the NanoDet target detection exhibits an average accuracy of 77.2% and a speed of approximately 10 fps, which satisfies the requirements of ROV tracking accuracy and speed. The average tracking error of ROV inspection is less than 0.5 m. The system addresses the problem of high risk and low efficiency of the manual detection of net damage in large-scale marine cage culture and can further analyze and predict the images and videos returned from the net. https://youtu.be/NKcgPcej5sI.</p>\n </div>","PeriodicalId":8104,"journal":{"name":"Aquaculture Research","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/are/7715838","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/are/7715838","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Open sea cage culture has become a major trend in mariculture, with strong wind resistance, wave resistance, anti-current ability, high degree of intensification, breeding density, and high yield. However, damage to the cage triggers severe economic losses; hence, to adopt effective and timely measures in minimizing economic losses, it is crucial for farmers to identify and understand the damage to the cage without delay. Presently, the damage detection of nets is mainly achieved by the underwater operation of divers, which is highly risky, inefficient, expensive, and exhibits poor real-time performance. Here, a remote-operated vehicle (ROV)-based autonomous net detection method is proposed. The system comprises two parts: the first part is sonar image target detection based on NanoDet. The sonar constantly collects data in the front and middle parts of the ROV, and the trained NanoDet model is embedded into the ROV control end, with the actual output of the angle and distance information between the ROV and net. The second part is the control part of the robot. The ROV tracks the net coat based on the angle and distance information of the target detection. In addition, when there are obstacles in front of the ROV, or it is far away from the net, the D-STAR algorithm is adopted to realize local path planning. Experimental results indicate that the NanoDet target detection exhibits an average accuracy of 77.2% and a speed of approximately 10 fps, which satisfies the requirements of ROV tracking accuracy and speed. The average tracking error of ROV inspection is less than 0.5 m. The system addresses the problem of high risk and low efficiency of the manual detection of net damage in large-scale marine cage culture and can further analyze and predict the images and videos returned from the net. https://youtu.be/NKcgPcej5sI.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquaculture Research
Aquaculture Research 农林科学-渔业
CiteScore
4.60
自引率
5.00%
发文量
464
审稿时长
5.3 months
期刊介绍: International in perspective, Aquaculture Research is published 12 times a year and specifically addresses research and reference needs of all working and studying within the many varied areas of aquaculture. The Journal regularly publishes papers on applied or scientific research relevant to freshwater, brackish, and marine aquaculture. It covers all aquatic organisms, floristic and faunistic, related directly or indirectly to human consumption. The journal also includes review articles, short communications and technical papers. Young scientists are particularly encouraged to submit short communications based on their own research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信