Isis Poinas, Christine N. Meynard, Guillaume Fried
{"title":"Plant Species Better Adapted to Climate Change Need Agricultural Extensification to Persist","authors":"Isis Poinas, Christine N. Meynard, Guillaume Fried","doi":"10.1111/ele.70030","DOIUrl":null,"url":null,"abstract":"<p>Agricultural intensification and climate change have led to well-known vegetation shifts in agricultural landscapes. However, concomitant plant functional changes in agroecosystems, especially at large scales, have been seldom characterised. Here, we used a standardised yearly monitoring of > 400 agricultural field margins in France to assess the temporal response of vegetation diversity and functional traits to variations in climate and intensity of agricultural practices (herbicides, fertilisation and mowing) between 2013 and 2021. We observed clear temporal trends of increasing warming and aridity, but trends towards agricultural extensification were weak or nonsignificant. Our results showed functional changes in plant communities over time, driven mostly by climate change and suggested selective forces opposing climate change to agricultural intensification. This translated as a temporal decline of competitive and ruderal species in favour of stress-tolerant species, putting plant communities in agroecosystems in a difficult position to escape both climate and agricultural pressures at the same time.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 2","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70030","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural intensification and climate change have led to well-known vegetation shifts in agricultural landscapes. However, concomitant plant functional changes in agroecosystems, especially at large scales, have been seldom characterised. Here, we used a standardised yearly monitoring of > 400 agricultural field margins in France to assess the temporal response of vegetation diversity and functional traits to variations in climate and intensity of agricultural practices (herbicides, fertilisation and mowing) between 2013 and 2021. We observed clear temporal trends of increasing warming and aridity, but trends towards agricultural extensification were weak or nonsignificant. Our results showed functional changes in plant communities over time, driven mostly by climate change and suggested selective forces opposing climate change to agricultural intensification. This translated as a temporal decline of competitive and ruderal species in favour of stress-tolerant species, putting plant communities in agroecosystems in a difficult position to escape both climate and agricultural pressures at the same time.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.