B. H. Hills, N. Holschuh, A. O. Hoffman, A. N. Horlings, E. Erwin, L. R. Kirkpatrick, T. J. Fudge, E. J. Steig, K. Christianson
{"title":"Radar-Derived Crystal Orientation Fabric Suggests Dynamic Stability at the Summit of Hercules Dome","authors":"B. H. Hills, N. Holschuh, A. O. Hoffman, A. N. Horlings, E. Erwin, L. R. Kirkpatrick, T. J. Fudge, E. J. Steig, K. Christianson","doi":"10.1029/2023JF007588","DOIUrl":null,"url":null,"abstract":"<p>Hercules Dome is a prospective ice-core site due to its setting in the bottleneck between East and West Antarctica. If ice from the last interglacial period has been preserved there, it could provide critical insight into the history of the West Antarctic Ice Sheet. The likelihood of a continuous, well-resolved, easily interpretable climate record preserved in ice extracted from Hercules Dome depends in part on the persistence of ice-flow dynamics at the divide. Significant changes in ice drawdown on either side of the divide, toward the Ross or Ronne ice shelves, could change the relative thickness of layers and the deposition environment represented in the core. Here, we use radar sounding to survey the ice flow at Hercules Dome. Repeated radar acquisitions show that vertical velocities are consistent with expectations for an ice divide with a frozen bed. Polarimetric radar acquisitions capture the ice-crystal orientation fabric (COF) which develops as ice strains, so it depends on both the pattern of ice flow and the time over which flow has been consistent. We model the timescales for COF evolution, finding that the summit of Hercules Dome has been dynamically stable in its current configuration, at least over the last five thousand years, a time period during which the Antarctic ice sheet was undergoing significant retreat at its margins. The evident stability may result from a prominent bedrock ridge under the divide, which had not been previously surveyed and has therefore not been represented in the bed geometry of coarsely resolved ice-sheet models.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JF007588","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hercules Dome is a prospective ice-core site due to its setting in the bottleneck between East and West Antarctica. If ice from the last interglacial period has been preserved there, it could provide critical insight into the history of the West Antarctic Ice Sheet. The likelihood of a continuous, well-resolved, easily interpretable climate record preserved in ice extracted from Hercules Dome depends in part on the persistence of ice-flow dynamics at the divide. Significant changes in ice drawdown on either side of the divide, toward the Ross or Ronne ice shelves, could change the relative thickness of layers and the deposition environment represented in the core. Here, we use radar sounding to survey the ice flow at Hercules Dome. Repeated radar acquisitions show that vertical velocities are consistent with expectations for an ice divide with a frozen bed. Polarimetric radar acquisitions capture the ice-crystal orientation fabric (COF) which develops as ice strains, so it depends on both the pattern of ice flow and the time over which flow has been consistent. We model the timescales for COF evolution, finding that the summit of Hercules Dome has been dynamically stable in its current configuration, at least over the last five thousand years, a time period during which the Antarctic ice sheet was undergoing significant retreat at its margins. The evident stability may result from a prominent bedrock ridge under the divide, which had not been previously surveyed and has therefore not been represented in the bed geometry of coarsely resolved ice-sheet models.