Phosphorous fertilization and soil pH affect the growth of deciduous trees in a temperate hardwood forest

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY
Ecosphere Pub Date : 2025-02-25 DOI:10.1002/ecs2.70184
Lydia V. Jahn, Sarah R. Carrino-Kyker, Alexa R. Busby, David J. Burke
{"title":"Phosphorous fertilization and soil pH affect the growth of deciduous trees in a temperate hardwood forest","authors":"Lydia V. Jahn,&nbsp;Sarah R. Carrino-Kyker,&nbsp;Alexa R. Busby,&nbsp;David J. Burke","doi":"10.1002/ecs2.70184","DOIUrl":null,"url":null,"abstract":"<p>Forest ecosystems with altered nutrient limitations are a common legacy of acidic deposition in North America. Continued acidic deposition has lowered soil pH and revealed phosphorus (P) limitations in many temperate forest ecosystems. Previous studies exploring P limitations or co-limitations are often short term, and thus may potentially show a response to limitation that is not sustained over time. To better understand how a forest's response to P limitation and acidic deposition can change over time, we added P, limestone to raise pH, and a cross-treatment where both P and limestone were added to 3 different northeastern Ohio forest stands over a 12-year period. We tracked diameter at breast height of the trees annually, conducted foliar nutrient analyses, and collected tree roots to assess treatment impacts on mycorrhizal colonization. We analyzed our dataset in three sections: the first 6 years after manipulation, the latter 6 years, and the entire 12-year period. These sections allowed us to compare differences between early responses to manipulation and later responses. Here, we found that P additions increased basal area growth across multiple species and throughout the entire study, confirming that our forest trees are P-limited. Cross-treatments similarly increased basal area growth, but not as much as P additions alone. Some species saw waning effects of treatment in the second half of the study. This could be due to changes in weather patterns, an adjustment of the study system's equilibrium, or the emergence of beech leaf disease in 2014, which has led to the decline of <i>Fagus grandifolia</i>. Early successional species such as <i>Acer rubrum</i> began to benefit from treatments after beech leaf disease killed canopy <i>F. grandifolia</i> trees, perhaps first being light-limited, but later able to take advantage of the nutrient additions and pH alteration of their soils. Our results suggest that in forests subject to acidic deposition, soil P may co-limit tree growth, but responses are species dependent.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"16 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70184","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Forest ecosystems with altered nutrient limitations are a common legacy of acidic deposition in North America. Continued acidic deposition has lowered soil pH and revealed phosphorus (P) limitations in many temperate forest ecosystems. Previous studies exploring P limitations or co-limitations are often short term, and thus may potentially show a response to limitation that is not sustained over time. To better understand how a forest's response to P limitation and acidic deposition can change over time, we added P, limestone to raise pH, and a cross-treatment where both P and limestone were added to 3 different northeastern Ohio forest stands over a 12-year period. We tracked diameter at breast height of the trees annually, conducted foliar nutrient analyses, and collected tree roots to assess treatment impacts on mycorrhizal colonization. We analyzed our dataset in three sections: the first 6 years after manipulation, the latter 6 years, and the entire 12-year period. These sections allowed us to compare differences between early responses to manipulation and later responses. Here, we found that P additions increased basal area growth across multiple species and throughout the entire study, confirming that our forest trees are P-limited. Cross-treatments similarly increased basal area growth, but not as much as P additions alone. Some species saw waning effects of treatment in the second half of the study. This could be due to changes in weather patterns, an adjustment of the study system's equilibrium, or the emergence of beech leaf disease in 2014, which has led to the decline of Fagus grandifolia. Early successional species such as Acer rubrum began to benefit from treatments after beech leaf disease killed canopy F. grandifolia trees, perhaps first being light-limited, but later able to take advantage of the nutrient additions and pH alteration of their soils. Our results suggest that in forests subject to acidic deposition, soil P may co-limit tree growth, but responses are species dependent.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信