Yunqiang Ma, Zhizhong Li, Dianjia Tan, Xiaojun Zou, Tonglian Tao
{"title":"Rare earth element characteristics of Holocene sediments at the southern margin of the Gurbantunggut Desert and their implications for provenance","authors":"Yunqiang Ma, Zhizhong Li, Dianjia Tan, Xiaojun Zou, Tonglian Tao","doi":"10.1002/esp.70022","DOIUrl":null,"url":null,"abstract":"<p>The identification of Holocene sediment provenance at the southern edge of the Gurbantunggut Desert is of great significance for understanding the interaction processes of regional wind and water forces, the evolution of river-dune landform patterns and the atmospheric circulation change in the Junggar Basin. In this study, three aeolian-alluvial stratigraphic profiles in the desert-oasis transition zone at the southern edge of the Gurbantunggut Desert and different types of surface sediments in surrounding areas were taken as the research objects. Based on the chronological framework established by OSL dating, we analysed the REE characteristics, combined with grain size, quartz sand morphology and surface micro-texture features to explore the provenance change of Holocene sediments in the study area. The results indicated that there was no significant provenance change during the Holocene for alluvial deposits at the southern edge of the desert, which were mainly composed of detritus eroded and weathered by glaciers in the Tianshan Mountains. However, the aeolian sand may have undergone provenance change. From early to middle Holocene, detritus from the Western Junggar Mountains served as the sand provenance for dune development in the southwestern desert, with fine-grained components potentially being transported by westerlies, contributing to aeolian sand in the southeastern desert. During the middle to late Holocene, lacustrine sediments in the desert-oasis transition zone at the southern edge of the desert may have become an important source of aeolian sand. In the modern era, the Western Junggar Mountains continue to supply sand for dune development in the southwestern desert, while fine-grained components in the northern desert sand, transported southward by northwest wind, have, to some extent, influenced dune formation in the southeastern desert. However, Due to the limited transport capacity of the wind, we believed that only silt and finer components participated in and influenced the provenance change of the Holocene aeolian deposits at the southern edge of the desert. The results can provide a reference for studying the formation and evolution of the Gurbantunggut desert and preventing desertification in the future.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70022","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of Holocene sediment provenance at the southern edge of the Gurbantunggut Desert is of great significance for understanding the interaction processes of regional wind and water forces, the evolution of river-dune landform patterns and the atmospheric circulation change in the Junggar Basin. In this study, three aeolian-alluvial stratigraphic profiles in the desert-oasis transition zone at the southern edge of the Gurbantunggut Desert and different types of surface sediments in surrounding areas were taken as the research objects. Based on the chronological framework established by OSL dating, we analysed the REE characteristics, combined with grain size, quartz sand morphology and surface micro-texture features to explore the provenance change of Holocene sediments in the study area. The results indicated that there was no significant provenance change during the Holocene for alluvial deposits at the southern edge of the desert, which were mainly composed of detritus eroded and weathered by glaciers in the Tianshan Mountains. However, the aeolian sand may have undergone provenance change. From early to middle Holocene, detritus from the Western Junggar Mountains served as the sand provenance for dune development in the southwestern desert, with fine-grained components potentially being transported by westerlies, contributing to aeolian sand in the southeastern desert. During the middle to late Holocene, lacustrine sediments in the desert-oasis transition zone at the southern edge of the desert may have become an important source of aeolian sand. In the modern era, the Western Junggar Mountains continue to supply sand for dune development in the southwestern desert, while fine-grained components in the northern desert sand, transported southward by northwest wind, have, to some extent, influenced dune formation in the southeastern desert. However, Due to the limited transport capacity of the wind, we believed that only silt and finer components participated in and influenced the provenance change of the Holocene aeolian deposits at the southern edge of the desert. The results can provide a reference for studying the formation and evolution of the Gurbantunggut desert and preventing desertification in the future.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences