Signal-quality-aware multisensor fusion for atrial fibrillation detection

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Shane Malone, Barry Cardiff, Deepu John, Arlene John
{"title":"Signal-quality-aware multisensor fusion for atrial fibrillation detection","authors":"Shane Malone,&nbsp;Barry Cardiff,&nbsp;Deepu John,&nbsp;Arlene John","doi":"10.1049/htl2.12121","DOIUrl":null,"url":null,"abstract":"<p>This letter introduces a novel method to enhance atrial fibrillation detection accuracy in healthcare monitoring. Wearable devices often face inconsistent signal quality due to noise. To address this, a multimodal data fusion technique that improves signal reliability during continuous monitoring is proposed. The method improves the precision of detecting R–R intervals by integrating wavelet coefficients from electrocardiogram, photoplethysmogram, and arterial blood pressure signals, weighted according to the quality of each signal. Furthermore, a bi-directional long short-term memory network is developed to accurately detect AF based on the derived heartrate or R–R intervals. Unlike prior studies, this work uniquely evaluates the system’s performance under noisy conditions, demonstrating significant accuracy improvements over single-channel methods. The system's generalizability is confirmed by evaluating the classifier's performance as the number of sensor inputs increases. At a signal-to-noise ratio of −10 dB, the accuracy improves by 4.51% with two sensor inputs and by 10.92% with three inputs, compared to using a single input.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces a novel method to enhance atrial fibrillation detection accuracy in healthcare monitoring. Wearable devices often face inconsistent signal quality due to noise. To address this, a multimodal data fusion technique that improves signal reliability during continuous monitoring is proposed. The method improves the precision of detecting R–R intervals by integrating wavelet coefficients from electrocardiogram, photoplethysmogram, and arterial blood pressure signals, weighted according to the quality of each signal. Furthermore, a bi-directional long short-term memory network is developed to accurately detect AF based on the derived heartrate or R–R intervals. Unlike prior studies, this work uniquely evaluates the system’s performance under noisy conditions, demonstrating significant accuracy improvements over single-channel methods. The system's generalizability is confirmed by evaluating the classifier's performance as the number of sensor inputs increases. At a signal-to-noise ratio of −10 dB, the accuracy improves by 4.51% with two sensor inputs and by 10.92% with three inputs, compared to using a single input.

Abstract Image

信号质量感知的多传感器融合心房颤动检测
本文介绍了一种在医疗监测中提高房颤检测准确性的新方法。可穿戴设备经常会因为噪声而面临信号质量不稳定的问题。为了解决这个问题,提出了一种多模态数据融合技术,提高了连续监测过程中的信号可靠性。该方法通过对心电图、光容积图和动脉血压信号的小波系数进行积分,根据各信号的质量进行加权,提高了R-R区间检测的精度。此外,我们还建立了一个双向长短期记忆网络,以准确检测心房颤动。与之前的研究不同,这项工作独特地评估了系统在噪声条件下的性能,证明了比单通道方法有显着的精度提高。随着传感器输入数量的增加,通过评估分类器的性能来确认系统的泛化性。在信噪比为- 10 dB时,与使用单输入相比,使用两个传感器输入的精度提高了4.51%,使用三个输入的精度提高了10.92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信