Nonlinear physics perspective and essential disease dynamics of EBV infections and the dynamics of EBV-associated diseases

IF 1.8 4区 生物学 Q3 BIOPHYSICS
Surasak Chiangga, Saman Mongkolsakulvong, Till Daniel Frank
{"title":"Nonlinear physics perspective and essential disease dynamics of EBV infections and the dynamics of EBV-associated diseases","authors":"Surasak Chiangga,&nbsp;Saman Mongkolsakulvong,&nbsp;Till Daniel Frank","doi":"10.1007/s10867-025-09676-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Epstein-Barr virus affects more than 90% of the world population and, consequently, is a virus whose infection dynamics should not be overlooked. It can cause the disease infectious mononucleosis and comes with other virus-associated diseases and conditions ranging from certain cancers to episodes of fatigue and depression. While previous epidemiological and virological modeling studies have worked out the details of possible infection dynamics scenarios, the current study takes a different approach. Using a nonlinear physics perspective and a fairly general epidemiological model, we identify the essential EBV infection dynamics along its so-called infection order parameter. We demonstrate that the essential dynamics describes the initial path that EBV infections take in the multi-dimensional model space. In particular, we show that the essential dynamics predicts the initial dynamics of the relevant subpopulations and describes how the subpopulations involved in an EBV infection outbreak organize themselves during the outbreak. Intervention and prevention measures are discussed in the context of the nonlinear physics perspective. An adverse synergy effect between two infection rate parameters is identified. An early warning system based on the so-called critical slowing down phenomenon is proposed for EBV infection waves in college and university student populations, which are populations particularly vulnerable to EBV infections.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"51 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-025-09676-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Epstein-Barr virus affects more than 90% of the world population and, consequently, is a virus whose infection dynamics should not be overlooked. It can cause the disease infectious mononucleosis and comes with other virus-associated diseases and conditions ranging from certain cancers to episodes of fatigue and depression. While previous epidemiological and virological modeling studies have worked out the details of possible infection dynamics scenarios, the current study takes a different approach. Using a nonlinear physics perspective and a fairly general epidemiological model, we identify the essential EBV infection dynamics along its so-called infection order parameter. We demonstrate that the essential dynamics describes the initial path that EBV infections take in the multi-dimensional model space. In particular, we show that the essential dynamics predicts the initial dynamics of the relevant subpopulations and describes how the subpopulations involved in an EBV infection outbreak organize themselves during the outbreak. Intervention and prevention measures are discussed in the context of the nonlinear physics perspective. An adverse synergy effect between two infection rate parameters is identified. An early warning system based on the so-called critical slowing down phenomenon is proposed for EBV infection waves in college and university student populations, which are populations particularly vulnerable to EBV infections.

Abstract Image

非线性物理学视角和 EBV 感染的基本疾病动力学以及 EBV 相关疾病的动力学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信