Enhancing Thermal Protection in Lithium Batteries with Power Bank-Inspired Multi-Network Aerogel and Thermally Induced Flexible Composite Phase Change Material
{"title":"Enhancing Thermal Protection in Lithium Batteries with Power Bank-Inspired Multi-Network Aerogel and Thermally Induced Flexible Composite Phase Change Material","authors":"Zaichao Li, Feng Cao, Yuang Zhang, Shufen Zhang, Bingtao Tang","doi":"10.1007/s40820-024-01593-0","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal runaway (TR) is considered a significant safety hazard for lithium batteries, and thermal protection materials are crucial in mitigating this risk. However, current thermal protection materials generally suffer from poor mechanical properties, flammability, leakage, and rigid crystallization, and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs. This study proposes a novel type of thermal protection material: an aerogel coupled composite phase change material (CPCM). The composite material consists of gelatin/sodium alginate (Ge/SA) composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component. Inspired by power bank, we coupled the aerogel with CPCM through the binder, so that CPCM can continue to ‘charge and store energy’ for the aerogel, effectively absorbing heat, delaying the heat saturation phenomenon, and maximizing the duration of thermal insulation. The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation (with a temperature difference of approximately 120 °C across a 1 cm thickness) and flame retardancy (achieving a V-0 flame retardant rating). The CPCM exhibits high heat storage density (811.9 J g<sup>−1</sup>), good thermally induced flexibility (bendable above 40 °C), and thermal stability. Furthermore, the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance, with the top surface temperature remaining at 89 °C after 100 min of exposure to a high temperature of 230 °C. This study provides a new direction for the development of TR protection materials for lithium batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01593-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01593-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal runaway (TR) is considered a significant safety hazard for lithium batteries, and thermal protection materials are crucial in mitigating this risk. However, current thermal protection materials generally suffer from poor mechanical properties, flammability, leakage, and rigid crystallization, and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs. This study proposes a novel type of thermal protection material: an aerogel coupled composite phase change material (CPCM). The composite material consists of gelatin/sodium alginate (Ge/SA) composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component. Inspired by power bank, we coupled the aerogel with CPCM through the binder, so that CPCM can continue to ‘charge and store energy’ for the aerogel, effectively absorbing heat, delaying the heat saturation phenomenon, and maximizing the duration of thermal insulation. The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation (with a temperature difference of approximately 120 °C across a 1 cm thickness) and flame retardancy (achieving a V-0 flame retardant rating). The CPCM exhibits high heat storage density (811.9 J g−1), good thermally induced flexibility (bendable above 40 °C), and thermal stability. Furthermore, the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance, with the top surface temperature remaining at 89 °C after 100 min of exposure to a high temperature of 230 °C. This study provides a new direction for the development of TR protection materials for lithium batteries.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.