Performance of soft magnetic cores based on the mixture of carbonyl iron and amorphous powders

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Han Yuan, Xiangyi Liu, Hongya Yu, Jianmin Yang, Zhongwu Liu
{"title":"Performance of soft magnetic cores based on the mixture of carbonyl iron and amorphous powders","authors":"Han Yuan,&nbsp;Xiangyi Liu,&nbsp;Hongya Yu,&nbsp;Jianmin Yang,&nbsp;Zhongwu Liu","doi":"10.1007/s10854-025-14477-9","DOIUrl":null,"url":null,"abstract":"<div><p>The mixture of carbonyl iron powders (CIP) with small particle size and amorphous powders (AP) with large particle size were employed for fabricating high performance soft magnetic cores. The extended discrete element method simulation (EDEM) showed that as the proportion of AP increases from 0 to 100 wt.%, the porosity of the core first decreases and then increases, reaching its lowest value at 70 wt.% AP. The micromagnetic simulations suggested that the enhanced static magnetic force between the powders with different sizes can promote the magnetic domain wall displacement. Experimental results confirmed that the highest compactness and lowest core loss of 408 kW/m<sup>3</sup> at 50 mT and 100 kHz have been obtained at 70 wt.% AP, agreeing well with the simulation results. The permeability of the core increases with the AP content up to 30 wt.%, then decreases. The quality factor at 1 MHz monotonically decreases from 69.9 to 52.2 as the AP content increases. The core with 20 wt.% AP exhibits the highest crush strength due to the improved meshing ability between magnetic powders by densification. However, the addition of AP has negative effect on the DC bias performance, which needs further investigation.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14477-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The mixture of carbonyl iron powders (CIP) with small particle size and amorphous powders (AP) with large particle size were employed for fabricating high performance soft magnetic cores. The extended discrete element method simulation (EDEM) showed that as the proportion of AP increases from 0 to 100 wt.%, the porosity of the core first decreases and then increases, reaching its lowest value at 70 wt.% AP. The micromagnetic simulations suggested that the enhanced static magnetic force between the powders with different sizes can promote the magnetic domain wall displacement. Experimental results confirmed that the highest compactness and lowest core loss of 408 kW/m3 at 50 mT and 100 kHz have been obtained at 70 wt.% AP, agreeing well with the simulation results. The permeability of the core increases with the AP content up to 30 wt.%, then decreases. The quality factor at 1 MHz monotonically decreases from 69.9 to 52.2 as the AP content increases. The core with 20 wt.% AP exhibits the highest crush strength due to the improved meshing ability between magnetic powders by densification. However, the addition of AP has negative effect on the DC bias performance, which needs further investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信