Akshaya Pisal Deshmukh, Reshma Bhosale, Tejashree Bhave
{"title":"Boosting the Electrochemical Hydrogen Evolution Activity by In Situ Decoration of Ag Nanoparticles over Few Layered MoS2 Nanosheets","authors":"Akshaya Pisal Deshmukh, Reshma Bhosale, Tejashree Bhave","doi":"10.1007/s10562-025-04957-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we have synthesized few layered MoS<sub>2</sub> nanosheets and to boost the electrochemical hydrogen evolution reaction (HER) over as an electrocatalyst, in situ Ag nanoparticles are loaded uniformly on the sheets by using simple and one pot method of hydrothermal synthesis. The overpotential drop recorded in Ag/MoS<sub>2</sub> is almost double as compared to pristine MoS<sub>2</sub> which indicates that decoration of Ag has lowered the barrier energy of the HER reaction and increased the efficiency of catalyst. In turn, layered structure of MoS<sub>2</sub> provided the matrix for uniform loading of Ag nanoparticles. More importantly, lower Tafel value (74 mV/dec), lower charge transfer resistance and increased electric double layer capacitance in 10 wt% Ag/MoS<sub>2</sub> clearly implies the enhanced HER performance as well as robust stability owing to improved interface between Ag and MoS<sub>2</sub> along with increased exposed active sites. Therefore, this work explicitly focuses on the study of in situ loading of Ag over MoS<sub>2</sub> which provided more accessibility to the active sites to elevate the HER activity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04957-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we have synthesized few layered MoS2 nanosheets and to boost the electrochemical hydrogen evolution reaction (HER) over as an electrocatalyst, in situ Ag nanoparticles are loaded uniformly on the sheets by using simple and one pot method of hydrothermal synthesis. The overpotential drop recorded in Ag/MoS2 is almost double as compared to pristine MoS2 which indicates that decoration of Ag has lowered the barrier energy of the HER reaction and increased the efficiency of catalyst. In turn, layered structure of MoS2 provided the matrix for uniform loading of Ag nanoparticles. More importantly, lower Tafel value (74 mV/dec), lower charge transfer resistance and increased electric double layer capacitance in 10 wt% Ag/MoS2 clearly implies the enhanced HER performance as well as robust stability owing to improved interface between Ag and MoS2 along with increased exposed active sites. Therefore, this work explicitly focuses on the study of in situ loading of Ag over MoS2 which provided more accessibility to the active sites to elevate the HER activity.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.