Tingley’s problem for the direct sum of uniformly closed extremely C-regular subspaces with the \(\ell ^{1}\)-sum norm

IF 0.8 Q2 MATHEMATICS
Daisuke Hirota
{"title":"Tingley’s problem for the direct sum of uniformly closed extremely C-regular subspaces with the \\(\\ell ^{1}\\)-sum norm","authors":"Daisuke Hirota","doi":"10.1007/s43036-025-00427-z","DOIUrl":null,"url":null,"abstract":"<div><p>Tingley’s problem asks whether every surjective isometry between two unit spheres of Banach spaces can be extended to a surjective real linear isometry between the whole spaces. Let <span>\\(\\{A_\\mu \\}_{\\mu \\in M}\\)</span> and <span>\\(\\{A_{\\nu }\\}_{\\nu \\in N}\\)</span> be two collections of uniformly closed extremely C-regular subspaces. In this paper, we prove that if <span>\\(\\Delta \\)</span> is a surjective isometry between two unit spheres of <span>\\(\\ell ^1\\)</span>-sums of uniformly closed extremely C-regular subspaces <span>\\(\\{A_{\\mu }\\}_{\\mu \\in M}\\)</span> and <span>\\(\\{A_{\\nu }\\}_{\\nu \\in N}\\)</span>, then <span>\\(\\Delta \\)</span> admits an extension to a surjective real linear isometry between the whole spaces. Typical examples of such Banach spaces <i>B</i> are <span>\\(C^1(I)\\)</span> of all continuously differentiable complex-valued functions on the closed unit interval <i>I</i> equipped with the norm <span>\\(\\Vert f\\Vert _{1}=|f(0)|+\\Vert f'\\Vert _{\\infty }\\)</span> for <span>\\(f\\in C^1(I)\\)</span>, <span>\\(C^{(n)}(I)\\)</span> of all <i>n</i>-times continuously differentiable complex-valued functions on <i>I</i> with the norm <span>\\(\\Vert f\\Vert _{1}=\\sum _{k=0}^{n-1}|f^{(k)}(0)|+~\\Vert f^{(n)}\\Vert _{\\infty }\\)</span> for <span>\\(C^{n}(I)\\)</span>, and <span>\\(\\ell ^1(\\mathbb {N})\\)</span> of all complex-valued functions on the set <span>\\(\\mathbb {N}\\)</span> of all natural numbers with the norm <span>\\(\\Vert a\\Vert _{1}=\\sum _{n\\in \\mathbb {N}}|a(n)|\\)</span> for <span>\\(a\\in \\ell ^1(\\mathbb {N})\\)</span>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00427-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tingley’s problem asks whether every surjective isometry between two unit spheres of Banach spaces can be extended to a surjective real linear isometry between the whole spaces. Let \(\{A_\mu \}_{\mu \in M}\) and \(\{A_{\nu }\}_{\nu \in N}\) be two collections of uniformly closed extremely C-regular subspaces. In this paper, we prove that if \(\Delta \) is a surjective isometry between two unit spheres of \(\ell ^1\)-sums of uniformly closed extremely C-regular subspaces \(\{A_{\mu }\}_{\mu \in M}\) and \(\{A_{\nu }\}_{\nu \in N}\), then \(\Delta \) admits an extension to a surjective real linear isometry between the whole spaces. Typical examples of such Banach spaces B are \(C^1(I)\) of all continuously differentiable complex-valued functions on the closed unit interval I equipped with the norm \(\Vert f\Vert _{1}=|f(0)|+\Vert f'\Vert _{\infty }\) for \(f\in C^1(I)\), \(C^{(n)}(I)\) of all n-times continuously differentiable complex-valued functions on I with the norm \(\Vert f\Vert _{1}=\sum _{k=0}^{n-1}|f^{(k)}(0)|+~\Vert f^{(n)}\Vert _{\infty }\) for \(C^{n}(I)\), and \(\ell ^1(\mathbb {N})\) of all complex-valued functions on the set \(\mathbb {N}\) of all natural numbers with the norm \(\Vert a\Vert _{1}=\sum _{n\in \mathbb {N}}|a(n)|\) for \(a\in \ell ^1(\mathbb {N})\).

具有\(\ell ^{1}\) -sum范数的一致闭极c正则子空间直和的Tingley问题
Tingley问题是关于Banach空间中两个单位球之间的满射等距是否可以推广为整个空间之间的满射实线性等距。设\(\{A_\mu \}_{\mu \in M}\)和\(\{A_{\nu }\}_{\nu \in N}\)是两个一致闭的极c正则子空间集合。在本文中,我们证明了如果\(\Delta \)是两个单位球之间的满射等距(\(\ell ^1\) -一致闭极c正则子空间\(\{A_{\mu }\}_{\mu \in M}\)和\(\{A_{\nu }\}_{\nu \in N}\)的和),则\(\Delta \)可以推广到整个空间之间的满射实线性等距。这类巴拿赫空间B的典型例子是\(C^1(I)\)在闭单位区间I上所有连续可微的复值函数对\(f\in C^1(I)\)具有\(\Vert f\Vert _{1}=|f(0)|+\Vert f'\Vert _{\infty }\)范数,\(C^{(n)}(I)\)在I上所有n次连续可微的复值函数对\(C^{n}(I)\)具有\(\Vert f\Vert _{1}=\sum _{k=0}^{n-1}|f^{(k)}(0)|+~\Vert f^{(n)}\Vert _{\infty }\)范数,和\(\ell ^1(\mathbb {N})\)所有复值函数在集合\(\mathbb {N}\)上所有自然数的范数\(\Vert a\Vert _{1}=\sum _{n\in \mathbb {N}}|a(n)|\)对于\(a\in \ell ^1(\mathbb {N})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信