{"title":"Enhancing the Output Performance of Green Cellulose-Based Triboelectric Nanogenerator by Doping with Polyvinyl Alcohol","authors":"Mengnan Qu, Yuan Deng, Hui Liu, Yuqing Wang, Cai-Li Sun, Jinmei He","doi":"10.1007/s12221-025-00855-x","DOIUrl":null,"url":null,"abstract":"<div><p>Triboelectric nanogenerator (TENG) is a promising energy harvesting device for harvesting renewable mechanical energy. Some materials used in triboelectric nanogenerator inevitably pollute the environment, so the development of green triboelectric materials has attracted widespread attention. Herein, we chose a non-toxic sodium carboxymethyl cellulose (CMC), which has poor tribopositive properties due to the carboxymethyl group contained in it. Thus, the tribopositive polarity of CMC is enhanced by doping hydroxy-rich polyvinyl alcohol (PVA) with strong electron-donating ability. Rough and porous CMC/PVA polymer blend films with strong tribopositive polarity and environmental friendliness were prepared by a simple physical blending strategy. The open-circuit voltage (<i>V</i><sub>OC</sub>) and short-circuit current (<i>I</i><sub>SC</sub>) were optimized to be 380 V and 49 µA, respectively, for a CMC/PVA mass ratio of 10:3, and the maximum power density of CMC/PVA-TENG was 1.32 mW/cm<sup>2</sup>. This study provides a feasible approach for enhancing the tribopositive properties of materials by doping modification and the development of green triboelectric nanogenerators.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 2","pages":"495 - 500"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00855-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Triboelectric nanogenerator (TENG) is a promising energy harvesting device for harvesting renewable mechanical energy. Some materials used in triboelectric nanogenerator inevitably pollute the environment, so the development of green triboelectric materials has attracted widespread attention. Herein, we chose a non-toxic sodium carboxymethyl cellulose (CMC), which has poor tribopositive properties due to the carboxymethyl group contained in it. Thus, the tribopositive polarity of CMC is enhanced by doping hydroxy-rich polyvinyl alcohol (PVA) with strong electron-donating ability. Rough and porous CMC/PVA polymer blend films with strong tribopositive polarity and environmental friendliness were prepared by a simple physical blending strategy. The open-circuit voltage (VOC) and short-circuit current (ISC) were optimized to be 380 V and 49 µA, respectively, for a CMC/PVA mass ratio of 10:3, and the maximum power density of CMC/PVA-TENG was 1.32 mW/cm2. This study provides a feasible approach for enhancing the tribopositive properties of materials by doping modification and the development of green triboelectric nanogenerators.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers