Homa Maleki, Rouhollah Semnani Rahbar, Sajjad Azimi, Thomas Schneiders, Caroline Emonts, Thomas Gries
{"title":"Optimizing Thermo-mechanical and Shape-Memory Properties in Nanofibrous Yarns Through Twist Variation and Core–Shell Structure","authors":"Homa Maleki, Rouhollah Semnani Rahbar, Sajjad Azimi, Thomas Schneiders, Caroline Emonts, Thomas Gries","doi":"10.1007/s12221-025-00857-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to optimize the thermo-mechanical properties and shape-memory effect of twisted nanofibrous yarns featuring a core–shell structure for potential integration into thermo-responsive smart textiles via conventional processing methods, such as weaving and knitting. Twisted shape-memory polyurethane (SMPU) yarns were fabricated utilizing a double-nozzle electrospinning device, and the effects of twist amount and core–shell configuration on their structural, mechanical, and shape-memory properties were examined. Morphological analysis confirmed the production of uniform yarns with twist angles ranging from 7 to 21°, while differential scanning calorimetry (DSC) thermograms indicated a transition temperature of approximately 44 °C. Increased levels of twist resulted in a significant rise in maximum stress, approximately 36%, alongside an enhancement in Young’s modulus of about 30%, with elongation at break values within the range of 140% to 180%. The thermo-mechanical behavior was assessed at 50% and 100% strain over three cycles, demonstrating improved shape fixity and recovery with increased twist levels. Although exhibiting lower mechanical strength, core–shell yarns displayed comparable shape-memory performance to their single counterparts. These findings contribute valuable insights into the optimization of electrospun yarn structures for enhanced shape-memory functionality in the context of smart textiles.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 2","pages":"607 - 619"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00857-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to optimize the thermo-mechanical properties and shape-memory effect of twisted nanofibrous yarns featuring a core–shell structure for potential integration into thermo-responsive smart textiles via conventional processing methods, such as weaving and knitting. Twisted shape-memory polyurethane (SMPU) yarns were fabricated utilizing a double-nozzle electrospinning device, and the effects of twist amount and core–shell configuration on their structural, mechanical, and shape-memory properties were examined. Morphological analysis confirmed the production of uniform yarns with twist angles ranging from 7 to 21°, while differential scanning calorimetry (DSC) thermograms indicated a transition temperature of approximately 44 °C. Increased levels of twist resulted in a significant rise in maximum stress, approximately 36%, alongside an enhancement in Young’s modulus of about 30%, with elongation at break values within the range of 140% to 180%. The thermo-mechanical behavior was assessed at 50% and 100% strain over three cycles, demonstrating improved shape fixity and recovery with increased twist levels. Although exhibiting lower mechanical strength, core–shell yarns displayed comparable shape-memory performance to their single counterparts. These findings contribute valuable insights into the optimization of electrospun yarn structures for enhanced shape-memory functionality in the context of smart textiles.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers