Magnetotransport Properties of La(Fe1-xSix)13 Compounds

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Kosuke Tanabe, Yuji Ueno, Hirofumi Wada
{"title":"Magnetotransport Properties of La(Fe1-xSix)13 Compounds","authors":"Kosuke Tanabe,&nbsp;Yuji Ueno,&nbsp;Hirofumi Wada","doi":"10.1007/s10948-025-06941-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ternary La(Fe<sub>1-<i>x</i></sub>Si<sub><i>x</i></sub>)<sub>13</sub> compounds undergo a first-order magnetic transition at the Curie temperature <i>T</i><sub>C</sub>. Above<i> T</i><sub>C</sub>, the compounds exhibit the itinerant electron metamagnetism. We have studied Hall effect and thermal conductivity of La(Fe<sub>1-<i>x</i></sub>Si<sub><i>x</i></sub>)<sub>13</sub>. The Hall resistivity was measured as a function of the magnetic field <i>B</i> at various temperatures. Using the magnetization data, we separated the normal Hall effect (NHE) and the anomalous Hall effect (AHE) in the ferromagnetic state. It is found that NHE is positive at low temperatures, while it becomes negative near <i>T</i><sub>C</sub>. The large AHE was observed for <i>x</i> = 0.12. Our analyses revealed that the skew scattering is dominant in the AHE. The temperature dependence of thermal conductivity λ exhibits a peak at <i>T</i><sub>C</sub> for <i>x</i> = 0.12 and 0.14, while abrupt reduction in λ was observed at <i>T</i><sub>C</sub> for <i>x</i> = 0.10 both on cooling and on heating. We discuss the physical origins of these anomalies in the transport properties of La(Fe<sub>1-<i>x</i></sub>Si<sub><i>x</i></sub>)<sub>13</sub>.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06941-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Ternary La(Fe1-xSix)13 compounds undergo a first-order magnetic transition at the Curie temperature TC. Above TC, the compounds exhibit the itinerant electron metamagnetism. We have studied Hall effect and thermal conductivity of La(Fe1-xSix)13. The Hall resistivity was measured as a function of the magnetic field B at various temperatures. Using the magnetization data, we separated the normal Hall effect (NHE) and the anomalous Hall effect (AHE) in the ferromagnetic state. It is found that NHE is positive at low temperatures, while it becomes negative near TC. The large AHE was observed for x = 0.12. Our analyses revealed that the skew scattering is dominant in the AHE. The temperature dependence of thermal conductivity λ exhibits a peak at TC for x = 0.12 and 0.14, while abrupt reduction in λ was observed at TC for x = 0.10 both on cooling and on heating. We discuss the physical origins of these anomalies in the transport properties of La(Fe1-xSix)13.

La(fe1 - x6)13化合物的磁输运性质
三元La(fe1 - x6)13化合物在居里温度下发生一级磁跃迁。在TC以上,化合物表现出流动的电子变磁性。研究了La(Fe1-xSix)13的霍尔效应和导热系数。在不同温度下测量了霍尔电阻率作为磁场B的函数。利用磁化数据,我们分离了铁磁状态下的正常霍尔效应(NHE)和异常霍尔效应(AHE)。发现NHE在低温时为正,在接近高温时变为负。在x = 0.12时观察到较大的AHE。我们的分析表明,斜散射在AHE中占主导地位。当x = 0.12和0.14时,热导率λ的温度依赖性在TC处达到峰值,而当x = 0.10时,热导率λ在冷却和加热时均急剧下降。我们讨论了La(Fe1-xSix)13输运性质中这些异常的物理根源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信