Special Action of Cobalt and Boron Nanoparticles on Bacterial Luminescence and Morphometric Indicators of Spring Sown Cereal and Millet Sprouts

IF 0.8 Q3 Engineering
A. A. Novikova, E. Yu. Podlasova, N. N. Glushchenko
{"title":"Special Action of Cobalt and Boron Nanoparticles on Bacterial Luminescence and Morphometric Indicators of Spring Sown Cereal and Millet Sprouts","authors":"A. A. Novikova,&nbsp;E. Yu. Podlasova,&nbsp;N. N. Glushchenko","doi":"10.1134/S263516762460189X","DOIUrl":null,"url":null,"abstract":"<p>The data on changes in bacterial luminescence and morphometric indicators of spring durum wheat (<i>Triticum durum</i> Desf.), spring barley (<i>Hordeum sativum</i> J.) and proso millet (<i>Panicum miliaceum</i> L.) after pre-sowing seed treatment with boron and cobalt nanoparticles in a polymer matrix are presented. The toxicity results of B and Co NPs on the bacterial luminescence test system for <i>Escherichia coli</i> <i>K12 TG1</i> show that the semi-lethal (causing 50% of bacteria death) concentration of B NPs is 2.4 × 10<sup>–2</sup> mg/mL and Co NPs is 3 × 10<sup>–3</sup> mg/mL, whereas the selected concentration range for pre-sowing seed treatment is from 10<sup>–9</sup> to 10<sup>–7</sup>%. The germination energy increases by 10.9‒25%, and seed germination by 2.9‒10.7%. Studying the morphometric parameters of shoots after NP treatment showed that cobalt has a more intensive effect on the growth of the superterrestrial parts of plants, and boron has better stimulation of the growth of the root system. In the case of B NPs, the sprout length increases by 4.8‒31.3% the root-system length increases by 14.9‒32%, the dry mass of the sprout by 14.3‒26.1%, and the dry mass of the root system by 17.9‒29% in comparison with the control. The pre-sowing seed treatment of cereal crops with Co NPs also shows an increase in shoot length by 29‒49%, root-system length by 12‒17%, sprout mass by 18‒36%, and root mass by 10‒20% relative to the control samples. A concentration of boron NPs of 10<sup>–8</sup>% and cobalt NPs of 10<sup>‒9</sup>% can be recommended for further production tests in the field.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 5","pages":"769 - 777"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S263516762460189X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The data on changes in bacterial luminescence and morphometric indicators of spring durum wheat (Triticum durum Desf.), spring barley (Hordeum sativum J.) and proso millet (Panicum miliaceum L.) after pre-sowing seed treatment with boron and cobalt nanoparticles in a polymer matrix are presented. The toxicity results of B and Co NPs on the bacterial luminescence test system for Escherichia coli K12 TG1 show that the semi-lethal (causing 50% of bacteria death) concentration of B NPs is 2.4 × 10–2 mg/mL and Co NPs is 3 × 10–3 mg/mL, whereas the selected concentration range for pre-sowing seed treatment is from 10–9 to 10–7%. The germination energy increases by 10.9‒25%, and seed germination by 2.9‒10.7%. Studying the morphometric parameters of shoots after NP treatment showed that cobalt has a more intensive effect on the growth of the superterrestrial parts of plants, and boron has better stimulation of the growth of the root system. In the case of B NPs, the sprout length increases by 4.8‒31.3% the root-system length increases by 14.9‒32%, the dry mass of the sprout by 14.3‒26.1%, and the dry mass of the root system by 17.9‒29% in comparison with the control. The pre-sowing seed treatment of cereal crops with Co NPs also shows an increase in shoot length by 29‒49%, root-system length by 12‒17%, sprout mass by 18‒36%, and root mass by 10‒20% relative to the control samples. A concentration of boron NPs of 10–8% and cobalt NPs of 10‒9% can be recommended for further production tests in the field.

Abstract Image

纳米钴和纳米硼对春播谷物和谷子芽细菌发光及形态计量指标的特殊作用
研究了高分子基质中硼和钴纳米颗粒对春小麦(Triticum durum Desf.)、春大麦(Hordeum sativum J.)和谷子(Panicum miliaceum L.)种子进行播前处理后细菌发光和形态计量指标的变化。B和Co NPs在大肠杆菌K12 TG1细菌发光测试系统上的毒性结果表明,B NPs的半致死浓度为2.4 × 10-2 mg/mL, Co NPs的半致死浓度为3 × 10-3 mg/mL,而播前种子处理的选择浓度范围为10-9 ~ 10-7%。萌发能提高10.9 ~ 25%,种子萌发率提高2.9 ~ 10.7%。通过对NP处理后植株芽部形态参数的研究表明,钴对植株陆地上部分生长的影响更为强烈,硼对根系生长的刺激效果更好。与对照相比,B NPs处理的芽长增加4.8 ~ 31.3%,根系长增加14.9 ~ 32%,芽干质量增加14.3 ~ 26.1%,根系干质量增加17.9 ~ 29%。与对照相比,含Co NPs的谷类作物播前种子处理的茎长增加了29-49%,根系长增加了12-17%,发芽质量增加了18-36%,根系质量增加了10-20%。可建议硼NPs浓度为10-8%,钴NPs浓度为10-9%,用于进一步的现场生产测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信