On the Growth of Tomato and Pepper Plants under Aseptic Conditions with Metal Nanoparticles and Chitosan

IF 0.8 Q3 Engineering
N. N. Glushchenko, O. A. Bogoslovskaya, I. P. Olkhovskaya, G. S. Nechitaylo
{"title":"On the Growth of Tomato and Pepper Plants under Aseptic Conditions with Metal Nanoparticles and Chitosan","authors":"N. N. Glushchenko,&nbsp;O. A. Bogoslovskaya,&nbsp;I. P. Olkhovskaya,&nbsp;G. S. Nechitaylo","doi":"10.1134/S2635167624602006","DOIUrl":null,"url":null,"abstract":"<p>This work presents the results of comparative studies of the effect of iron, zinc, copper nanoparticles (NPs) and their compositions, and chitosan in nutrient media on seed germination and the morphophysiological parameters of tomatoes and peppers. It is found that for nutrient media containing chitosan and metal NPs instead of salts of these elements, the germination of pepper seeds increased on average by 3–7% and tomato seeds by 1.4–2.8 times compared to the germination of seeds on standard Murashige—Skoog medium (control), depending on the concentration, element, and combination with chitosan. The introduction of metal NPs and chitosan into the nutrient media for the cultivation of tomato and pepper plants has an insignificant effect on a change in root length, but promotes an increase in its activity, for example, for Fe NPs at a concentration of 3 mg/L by 2.24 times (<i>p</i> ≤ 0.05), in combination with chitosan by 2.44 times (<i>p</i> ≤ 0.05) compared to the control. Plant material prepared on nutrient media with metal NPs and chitosan in aseptic conditions, planted into the soil, allows an increase in the yield of tomatoes by 10–15% and peppers by 2 times.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 5","pages":"719 - 725"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the results of comparative studies of the effect of iron, zinc, copper nanoparticles (NPs) and their compositions, and chitosan in nutrient media on seed germination and the morphophysiological parameters of tomatoes and peppers. It is found that for nutrient media containing chitosan and metal NPs instead of salts of these elements, the germination of pepper seeds increased on average by 3–7% and tomato seeds by 1.4–2.8 times compared to the germination of seeds on standard Murashige—Skoog medium (control), depending on the concentration, element, and combination with chitosan. The introduction of metal NPs and chitosan into the nutrient media for the cultivation of tomato and pepper plants has an insignificant effect on a change in root length, but promotes an increase in its activity, for example, for Fe NPs at a concentration of 3 mg/L by 2.24 times (p ≤ 0.05), in combination with chitosan by 2.44 times (p ≤ 0.05) compared to the control. Plant material prepared on nutrient media with metal NPs and chitosan in aseptic conditions, planted into the soil, allows an increase in the yield of tomatoes by 10–15% and peppers by 2 times.

Abstract Image

金属纳米颗粒和壳聚糖对番茄和辣椒在无菌条件下生长的影响
本文比较研究了营养介质中铁、锌、铜纳米粒子及其组成和壳聚糖对番茄和辣椒种子萌发及形态生理参数的影响。结果表明,在以壳聚糖和金属NPs代替盐的营养培养基中,辣椒种子的发芽率平均提高了3-7%,番茄种子的发芽率平均提高了1.4-2.8倍,这取决于壳聚糖的浓度、元素和与壳聚糖的组合。在栽培番茄和辣椒的营养培养基中添加金属NPs和壳聚糖对根长变化的影响不显著,但促进了根长活性的提高,如铁NPs浓度为3 mg/L时比对照提高了2.24倍(p≤0.05),与壳聚糖联合使用时比对照提高了2.44倍(p≤0.05)。在无菌条件下,在含有金属NPs和壳聚糖的营养培养基上制备的植物材料,种植在土壤中,可以使西红柿的产量增加10-15%,辣椒的产量增加2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信