Benliang Hou, Yea Eun Lee, Do Hyeon Kim, Heqing Ye, Hyeok-jin Kwon, Se Hyun Kim
{"title":"Research on Parylene-C application to wearable organic electronics: in the respect of substrate type","authors":"Benliang Hou, Yea Eun Lee, Do Hyeon Kim, Heqing Ye, Hyeok-jin Kwon, Se Hyun Kim","doi":"10.1007/s13233-024-00328-9","DOIUrl":null,"url":null,"abstract":"<p>Poly(para-xylylene) polymers, also known as parylene and its derivatives, have attracted attention as functional materials in organic electronics. Among the various parylene derivatives, Parylene-C is a unique material that has gained attention in various industries, including wearable electronic devices. Parylene-C is particularly suitable for coating and protecting electronic components because of its high dielectric strength, biocompatibility, and chemical resistance. Herein, we compare three different substrates for application in wearable organic electronics with Parylene-C with respect to the deposition process. We identified the morphology and electrical properties of Parylene-C with a pristine layer and practical electronic devices (capacitors and transistors). Based on this analysis, we applied integrated logic devices with optimized organic transistors on a Parylene-C substrate. Therefore, we expect that this study will aid in the selection and use of versatile substrate types for the fabrication of organic electronics with Parylene-C materials.</p>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 2","pages":"185 - 194"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00328-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(para-xylylene) polymers, also known as parylene and its derivatives, have attracted attention as functional materials in organic electronics. Among the various parylene derivatives, Parylene-C is a unique material that has gained attention in various industries, including wearable electronic devices. Parylene-C is particularly suitable for coating and protecting electronic components because of its high dielectric strength, biocompatibility, and chemical resistance. Herein, we compare three different substrates for application in wearable organic electronics with Parylene-C with respect to the deposition process. We identified the morphology and electrical properties of Parylene-C with a pristine layer and practical electronic devices (capacitors and transistors). Based on this analysis, we applied integrated logic devices with optimized organic transistors on a Parylene-C substrate. Therefore, we expect that this study will aid in the selection and use of versatile substrate types for the fabrication of organic electronics with Parylene-C materials.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.