Re-Pen: Reinforcement Learning-Enforced Penetration Testing for SoC Security Verification

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hasan Al Shaikh;Shuvagata Saha;Kimia Zamiri Azar;Farimah Farahmandi;Mark Tehranipoor;Fahim Rahman
{"title":"Re-Pen: Reinforcement Learning-Enforced Penetration Testing for SoC Security Verification","authors":"Hasan Al Shaikh;Shuvagata Saha;Kimia Zamiri Azar;Farimah Farahmandi;Mark Tehranipoor;Fahim Rahman","doi":"10.1109/TVLSI.2024.3510682","DOIUrl":null,"url":null,"abstract":"Due to the increasingly complex interaction between the tightly integrated components, reuse of various untrustworthy third-party IPs (3PIPs), and security-unaware design practices, there have been a rising number of reports of system-on-chip (SoC) hardware (HW) vulnerabilities that compromise the security of critical assets. SoC security verification, therefore, is an indispensable part of the verification effort. The existing hardware verification methodologies either presuppose white-box knowledge or scale poorly with increasing design complexity. Hardware penetration testing (pentest) is an emerging gray-box security verification methodology at the register-transfer level (RTL) that is applicable across a wide variety of threat models and addresses many shortcomings of the existing methodologies. In this work, we propose Re-Pen, a novel hardware pentest framework that requires minimal gray-box information from the design specification to achieve significantly better security vulnerability (SV) detection performance than state-of-the-art pentest techniques. At the core of this framework lies a mutation engine that combines the strengths of reinforcement learning (RL) and binary particle swarm optimization (BPSO) in its test pattern mutation strategy to generate intelligent test patterns without manual supervision. This framework significantly reduces the requirement for detailed, manual, expertise-driven adaptations specific to the SoC under test. Through extensive experiments conducted on multiple SoCs, we demonstrate that Re-Pen can reduce vulnerability detection time by up to <inline-formula> <tex-math>$3\\times $ </tex-math></inline-formula> and achieve a markedly improved consistency compared with the state of the art. Furthermore, Re-Pen was able to detect native security bugs in an open-source SoC. It successfully identified a scenario where, despite a functionally correct hardware implementation, a mistake in the architectural specification allowed privilege escalation from the software layer.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 3","pages":"853-866"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816701/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the increasingly complex interaction between the tightly integrated components, reuse of various untrustworthy third-party IPs (3PIPs), and security-unaware design practices, there have been a rising number of reports of system-on-chip (SoC) hardware (HW) vulnerabilities that compromise the security of critical assets. SoC security verification, therefore, is an indispensable part of the verification effort. The existing hardware verification methodologies either presuppose white-box knowledge or scale poorly with increasing design complexity. Hardware penetration testing (pentest) is an emerging gray-box security verification methodology at the register-transfer level (RTL) that is applicable across a wide variety of threat models and addresses many shortcomings of the existing methodologies. In this work, we propose Re-Pen, a novel hardware pentest framework that requires minimal gray-box information from the design specification to achieve significantly better security vulnerability (SV) detection performance than state-of-the-art pentest techniques. At the core of this framework lies a mutation engine that combines the strengths of reinforcement learning (RL) and binary particle swarm optimization (BPSO) in its test pattern mutation strategy to generate intelligent test patterns without manual supervision. This framework significantly reduces the requirement for detailed, manual, expertise-driven adaptations specific to the SoC under test. Through extensive experiments conducted on multiple SoCs, we demonstrate that Re-Pen can reduce vulnerability detection time by up to $3\times $ and achieve a markedly improved consistency compared with the state of the art. Furthermore, Re-Pen was able to detect native security bugs in an open-source SoC. It successfully identified a scenario where, despite a functionally correct hardware implementation, a mistake in the architectural specification allowed privilege escalation from the software layer.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信