{"title":"A Novel Parallel Feed-Forward Current Ripple Rejection (PFFCRR) Technique for High Load Current High PSRR nMOS LDOs","authors":"Yuhong Lu;Ting-An Yen;Rakshit Dambe Nayak;Shashank Alevoor;Bhushan Talele;Spoorti Patil;Keith Kunz;Bertan Bakkaloglu","doi":"10.1109/TVLSI.2024.3497803","DOIUrl":null,"url":null,"abstract":"There is a significant demand in systems-on-chip (SoCs) for a high-power efficiency low-dropout regulator (LDO) that provides lower dropout voltage, higher load current, and low quiescent current. A high-power supply rejection ratio (PSRR) at the mid-to-high frequency band (0.1–10 MHz) is crucial for LDO to generate low-noise power supplies when driven by switching power converters. However, this presents a significant challenge to enhancing the PSRR since the pass field-effect transistor (FET) operates in the deep triode region at high-current and dropout conditions. In this article, a parallel feed-forward current ripple rejection (PFFCRR) technique is proposed to improve the PSRR performance regardless of the operation region of the nMOS pass FET. The proposed approach senses the supply-induced current ripple and cancels the original ripple through a current path that runs parallel to the nMOS pass FET. The proposed LDO is fabricated in a 180-nm BCD process. The proposed LDO achieves a PSRR better than −35 dB up to 10 MHz at 300-mV dropout voltage with 0.5-A load current and a load capacitor of <inline-formula> <tex-math>$2.2~\\mu $ </tex-math></inline-formula>F. The PFFCRR approach achieves a PSRR improvement of 18 dB at 1 MHz at 100-mV dropout voltage with a 2.15-A load current when the pass FET operates in the deep triode region. Moreover, the proposed LDO enhances the transient performance with an overshoot and an undershoot of 40.54 and 36.45 mV, respectively, against <inline-formula> <tex-math>$\\Delta {I}_{\\text {LOAD}}$ </tex-math></inline-formula> of 1 A with a slew rate of 1 A/<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>s.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 3","pages":"651-661"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10769013/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
There is a significant demand in systems-on-chip (SoCs) for a high-power efficiency low-dropout regulator (LDO) that provides lower dropout voltage, higher load current, and low quiescent current. A high-power supply rejection ratio (PSRR) at the mid-to-high frequency band (0.1–10 MHz) is crucial for LDO to generate low-noise power supplies when driven by switching power converters. However, this presents a significant challenge to enhancing the PSRR since the pass field-effect transistor (FET) operates in the deep triode region at high-current and dropout conditions. In this article, a parallel feed-forward current ripple rejection (PFFCRR) technique is proposed to improve the PSRR performance regardless of the operation region of the nMOS pass FET. The proposed approach senses the supply-induced current ripple and cancels the original ripple through a current path that runs parallel to the nMOS pass FET. The proposed LDO is fabricated in a 180-nm BCD process. The proposed LDO achieves a PSRR better than −35 dB up to 10 MHz at 300-mV dropout voltage with 0.5-A load current and a load capacitor of $2.2~\mu $ F. The PFFCRR approach achieves a PSRR improvement of 18 dB at 1 MHz at 100-mV dropout voltage with a 2.15-A load current when the pass FET operates in the deep triode region. Moreover, the proposed LDO enhances the transient performance with an overshoot and an undershoot of 40.54 and 36.45 mV, respectively, against $\Delta {I}_{\text {LOAD}}$ of 1 A with a slew rate of 1 A/$\mu $ s.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.