Quan Ouyang;Nourallah Ghaeminezhad;Yang Li;Torsten Wik;Changfu Zou
{"title":"A Unified Model for Active Battery Equalization Systems","authors":"Quan Ouyang;Nourallah Ghaeminezhad;Yang Li;Torsten Wik;Changfu Zou","doi":"10.1109/TCST.2024.3496439","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery packs demand effective active equalization systems to enhance their usable capacity and lifetime. Despite numerous topologies and control schemes proposed in the literature, conducting quantitative analyses, comprehensive comparisons, and systematic optimization of their performance remains challenging due to the absence of a unified mathematical model at the pack level. To address this gap, we introduce a novel, hypergraph-based approach to establish the first unified model for various active battery equalization systems. This model reveals the intrinsic relationship between battery cells and equalizers by representing them as the vertices and hyperedges of hypergraphs, respectively. With the developed model, we identify the necessary conditions for all equalization systems to achieve balance through controllability analysis, offering valuable insights for selecting the number of equalizers. Moreover, we prove that the battery equalization time is inversely correlated with the second smallest eigenvalue of the hypergraph’s Laplacian matrix of each equalization system. This significantly simplifies the selection and optimized design of equalization systems, obviating the need for extensive experiments or simulations to derive the equalization time. Illustrative results demonstrate the efficiency of the proposed model and validate our findings.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"685-699"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10759103/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion battery packs demand effective active equalization systems to enhance their usable capacity and lifetime. Despite numerous topologies and control schemes proposed in the literature, conducting quantitative analyses, comprehensive comparisons, and systematic optimization of their performance remains challenging due to the absence of a unified mathematical model at the pack level. To address this gap, we introduce a novel, hypergraph-based approach to establish the first unified model for various active battery equalization systems. This model reveals the intrinsic relationship between battery cells and equalizers by representing them as the vertices and hyperedges of hypergraphs, respectively. With the developed model, we identify the necessary conditions for all equalization systems to achieve balance through controllability analysis, offering valuable insights for selecting the number of equalizers. Moreover, we prove that the battery equalization time is inversely correlated with the second smallest eigenvalue of the hypergraph’s Laplacian matrix of each equalization system. This significantly simplifies the selection and optimized design of equalization systems, obviating the need for extensive experiments or simulations to derive the equalization time. Illustrative results demonstrate the efficiency of the proposed model and validate our findings.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.