Control of Periodically Waked Wind Turbines

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Aemilius A. W. van Vondelen;Atindriyo K. Pamososuryo;Sachin T. Navalkar;Jan-Willem van Wingerden
{"title":"Control of Periodically Waked Wind Turbines","authors":"Aemilius A. W. van Vondelen;Atindriyo K. Pamososuryo;Sachin T. Navalkar;Jan-Willem van Wingerden","doi":"10.1109/TCST.2024.3508577","DOIUrl":null,"url":null,"abstract":"Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine’s blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator’s demands and the desired loads/energy capture tradeoff.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"700-713"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10798995","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10798995/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Periodic wakes are created on upstream wind turbines by pitching strategies, such as the Helix approach, to enhance wake mixing and thereby increase power production for wind turbines directly in their wake. Consequently, a cyclic load is not only generated on the actuating turbine’s blades but also on the waked wind turbine. While the upstream load is the result of the pitching required for wake mixing, the downstream load originates from interaction with the periodic wake and only causes fatigue damage. This study proposes two novel individual pitch control schemes in which such a periodic load on the downstream turbine can be treated: by attenuation or amplification. The former method improves the fatigue life of the downstream turbine, whereas the latter enhances wake mixing further downstream by exploiting the already-present periodic content in the wake; both were validated on a three-turbine wind farm in high-fidelity large-eddy simulations. Fatigue damage reductions of around 10% were found in the load mitigation case, while an additional power enhancement of 6% was generated on the third turbine when implementing the amplification strategy. Both objectives can easily be toggled depending on a wind farm operator’s demands and the desired loads/energy capture tradeoff.
周期性尾迹风力发电机的控制
周期性尾迹是通过俯角策略在上游风力涡轮机上产生的,例如螺旋方法,以增强尾迹混合,从而直接增加尾迹中风力涡轮机的发电量。因此,不仅在作动风机叶片上产生循环载荷,而且在随动风机上也产生循环载荷。上游载荷是尾流混合所需俯仰的结果,而下游载荷是与周期性尾流相互作用产生的,只造成疲劳损伤。本研究提出了两种新的单独螺距控制方案,其中下游涡轮上的周期性负荷可以通过衰减或放大来处理。前者提高了下游涡轮的疲劳寿命,而后者利用尾迹中已经存在的周期性成分,进一步增强了下游的尾迹混合;这两种方法都在一个三涡轮风电场的高保真大涡模拟中得到了验证。在负载缓解情况下,疲劳损伤减少了约10%,而在实施放大策略时,第三台涡轮机产生了6%的额外功率增强。这两个目标都可以很容易地切换,这取决于风电场运营商的需求和期望的负载/能量捕获权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信