Optimal Performance Guaranteed Motion Control for Libration Point Orbit Rendezvous: A Semianalytical Predictive Approach

IF 4.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Caisheng Wei;Guanhua Huang;Zeyang Yin;Biao Luo;Yong Xu
{"title":"Optimal Performance Guaranteed Motion Control for Libration Point Orbit Rendezvous: A Semianalytical Predictive Approach","authors":"Caisheng Wei;Guanhua Huang;Zeyang Yin;Biao Luo;Yong Xu","doi":"10.1109/TCST.2024.3492795","DOIUrl":null,"url":null,"abstract":"In light of the importance of libration point orbits (LPOs) in deep space explorations, a highly reliable and precise position control method is required to guarantee safety and effectiveness during spacecraft proximity and rendezvous operations. Different from the existing works, this article investigates a novel semianalytical optimal performance guaranteed control approach for LPO rendezvous subject to actuator saturation. First, the unified error transformation technique is applied to remove the performance constraints quantitatively characterizing the transient and static responses of the LPO motion dynamics. Then, an explicit receding horizon predictive control strategy with guaranteed prescribed performance is devised by exploiting sequential action control structure under actuator saturation. Accordingly, a syncretic iterative control action sequence is developed based on the two controllers designed earlier. Compared with the existing methods, the major merit of the proposed one lies in that the optimal control efficiency of the motion tracking performance is improved dramatically with a low-complexity computation burden. Finally, three groups of illustrative examples are employed to validate the effectiveness of the proposed control method.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"629-642"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10753016/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In light of the importance of libration point orbits (LPOs) in deep space explorations, a highly reliable and precise position control method is required to guarantee safety and effectiveness during spacecraft proximity and rendezvous operations. Different from the existing works, this article investigates a novel semianalytical optimal performance guaranteed control approach for LPO rendezvous subject to actuator saturation. First, the unified error transformation technique is applied to remove the performance constraints quantitatively characterizing the transient and static responses of the LPO motion dynamics. Then, an explicit receding horizon predictive control strategy with guaranteed prescribed performance is devised by exploiting sequential action control structure under actuator saturation. Accordingly, a syncretic iterative control action sequence is developed based on the two controllers designed earlier. Compared with the existing methods, the major merit of the proposed one lies in that the optimal control efficiency of the motion tracking performance is improved dramatically with a low-complexity computation burden. Finally, three groups of illustrative examples are employed to validate the effectiveness of the proposed control method.
振动点轨道交会的最优性能保证运动控制:半解析预测方法
鉴于在深空探测中着力点轨道的重要性,需要一种高可靠、高精度的位置控制方法来保证航天器接近和交会操作的安全性和有效性。与已有的研究不同,本文研究了一种新的半解析最优性能保证控制方法。首先,采用统一误差变换技术,消除了定量表征LPO运动动力学瞬态和静态响应的性能约束;然后,利用执行器饱和下的顺序控制结构,设计了一种保证预定性能的显式后退地平线预测控制策略。据此,在上述两种控制器的基础上,提出了一种混合迭代控制动作序列。与现有方法相比,该方法的主要优点在于以较低的计算复杂度显著提高了运动跟踪性能的最优控制效率。最后,通过三组实例验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Control Systems Technology
IEEE Transactions on Control Systems Technology 工程技术-工程:电子与电气
CiteScore
10.70
自引率
2.10%
发文量
218
审稿时长
6.7 months
期刊介绍: The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信