{"title":"Randomized Customer-Sensitivity-Aware Control of Thermostatic Loads for Better Integration of Intermittent Renewables","authors":"Tanguy Julien;Roland P. Malhamé","doi":"10.1109/TCST.2024.3505033","DOIUrl":null,"url":null,"abstract":"Increased electric grid penetration of intermittent renewable energy sources has reduced the controllability of the generation side and created a need for more coordination between generation and load to maintain grid stability. Thermostatically controlled loads (TCLs) have long been seen as capable of providing a source of load flexibility. However, controlling thousands of small loads to create a better match between generation and consumption is a challenging task. Direct load control methods tend to be imprecise and invasive, while pricing-based methods can result in social push-back and produce unreliable results. Following an established trend aimed at limiting loads synchronization effects, a probabilistic control scheme is proposed. It is based on a novel type of aggregator-customer contracts. The latter are tailored a priori so as to account for a customer’s particular tolerance to loss of comfort versus interest in cost reduction. While through these contracts, aggregators have to obey preagreed constraints on their controls, the upside for them is that they can reliably anticipate the aggregate behaviors that their pool of loads can achieve. The control is decentralized via a single so-called pressure signal which is broadcast and acts locally, in a probabilistic manner, on thermostat set points. We demonstrate how the probabilistic nature of the control allows achieving a continuum of smooth potentially desirable aggregate load behaviors.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"671-684"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777836/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Increased electric grid penetration of intermittent renewable energy sources has reduced the controllability of the generation side and created a need for more coordination between generation and load to maintain grid stability. Thermostatically controlled loads (TCLs) have long been seen as capable of providing a source of load flexibility. However, controlling thousands of small loads to create a better match between generation and consumption is a challenging task. Direct load control methods tend to be imprecise and invasive, while pricing-based methods can result in social push-back and produce unreliable results. Following an established trend aimed at limiting loads synchronization effects, a probabilistic control scheme is proposed. It is based on a novel type of aggregator-customer contracts. The latter are tailored a priori so as to account for a customer’s particular tolerance to loss of comfort versus interest in cost reduction. While through these contracts, aggregators have to obey preagreed constraints on their controls, the upside for them is that they can reliably anticipate the aggregate behaviors that their pool of loads can achieve. The control is decentralized via a single so-called pressure signal which is broadcast and acts locally, in a probabilistic manner, on thermostat set points. We demonstrate how the probabilistic nature of the control allows achieving a continuum of smooth potentially desirable aggregate load behaviors.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.