Real-Time Air Quality Monitoring: A Smart IoT System Using Low-Cost Sensors and 3-D Printing

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ainhoa Osa-Sanchez;Begonya Garcia-Zapirain
{"title":"Real-Time Air Quality Monitoring: A Smart IoT System Using Low-Cost Sensors and 3-D Printing","authors":"Ainhoa Osa-Sanchez;Begonya Garcia-Zapirain","doi":"10.1109/JRFID.2025.3541816","DOIUrl":null,"url":null,"abstract":"This project developed a portable air quality station housed in a 3D-printed enclosure, designed to streamline data sampling and minimize material use in laboratory settings. With health concerns related to specific gases and particulates, especially for vulnerable populations such as asthmatics and children, this innovation has significant potential for improving public health. The importance of indoor ventilation has been underscored by COVID-19, which is primarily transmitted through airborne particles, highlighting the need for efficient monitoring and risk reduction strategies. The station utilizes open-source Python software, with a Raspberry Pi as the core data collection and storage unit, interfacing with various sensors via GPIO, serial, and I2C connections. The modular design of the device allows users to customize measurements and focus on specific pollutants. Validation through end-user testing confirmed the system’s effectiveness and usability in practical settings. The portable setup offers a cost-effective solution for building air quality networks that address the needs of vulnerable groups. The module demonstrated a high reliability rate of 95.30% in detecting common pollutants, validated through CO2 monitoring in classrooms (with a 90.47% reliability compared to commercial devices) and outdoor air quality assessments (with an 85.63% reliability rate.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"65-79"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10884852/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This project developed a portable air quality station housed in a 3D-printed enclosure, designed to streamline data sampling and minimize material use in laboratory settings. With health concerns related to specific gases and particulates, especially for vulnerable populations such as asthmatics and children, this innovation has significant potential for improving public health. The importance of indoor ventilation has been underscored by COVID-19, which is primarily transmitted through airborne particles, highlighting the need for efficient monitoring and risk reduction strategies. The station utilizes open-source Python software, with a Raspberry Pi as the core data collection and storage unit, interfacing with various sensors via GPIO, serial, and I2C connections. The modular design of the device allows users to customize measurements and focus on specific pollutants. Validation through end-user testing confirmed the system’s effectiveness and usability in practical settings. The portable setup offers a cost-effective solution for building air quality networks that address the needs of vulnerable groups. The module demonstrated a high reliability rate of 95.30% in detecting common pollutants, validated through CO2 monitoring in classrooms (with a 90.47% reliability compared to commercial devices) and outdoor air quality assessments (with an 85.63% reliability rate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信