{"title":"Fast Sparse Dynamic Matrix Estimation Method With Differential Information for Industrial Process Monitoring","authors":"Mingliang Cui;Xin Ma;Youqing Wang;Jipeng Guo;Tongze Hou","doi":"10.1109/TCST.2024.3483431","DOIUrl":null,"url":null,"abstract":"With increasing complexity of industrial processes, a number of variables are becoming increasingly large in modeling and monitoring steps, which is particularly prominent in dynamic processes. To address the issue of information redundancy in dynamic processes, this study proposes a sparse dynamic matrix estimation method (SDMEM) based on joint sparse constraints, which can effectively remove the irrelevant process variables and implement a more flexible structure for a dynamic process. Accordingly, the problem that dynamic features are difficult to extract owing to the high sampling rate is effectively solved by introducing differential information. Furthermore, a fast iterative optimization algorithm is designed for the proposed SDMEM with differential information (SDMEM-DI). A theoretical analysis shows the superiority of the proposed optimization algorithm in reducing computational complexity. Finally, experiments are conducted on a numerical example, a continuous stirred tank reactor (CSTR), and a catalytic cracking unit data of a refining and chemical plant, and the results show the effectiveness of the proposed SDMEM-DI.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"512-525"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737648/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With increasing complexity of industrial processes, a number of variables are becoming increasingly large in modeling and monitoring steps, which is particularly prominent in dynamic processes. To address the issue of information redundancy in dynamic processes, this study proposes a sparse dynamic matrix estimation method (SDMEM) based on joint sparse constraints, which can effectively remove the irrelevant process variables and implement a more flexible structure for a dynamic process. Accordingly, the problem that dynamic features are difficult to extract owing to the high sampling rate is effectively solved by introducing differential information. Furthermore, a fast iterative optimization algorithm is designed for the proposed SDMEM with differential information (SDMEM-DI). A theoretical analysis shows the superiority of the proposed optimization algorithm in reducing computational complexity. Finally, experiments are conducted on a numerical example, a continuous stirred tank reactor (CSTR), and a catalytic cracking unit data of a refining and chemical plant, and the results show the effectiveness of the proposed SDMEM-DI.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.