{"title":"Real-Time NMPC With Convex–Concave Constraints and Application to Eco-Driving","authors":"Shiying Dong;Andrea Ghezzi;Jakob Harzer;Jonathan Frey;Bingzhao Gao;Hong Chen;Moritz Diehl","doi":"10.1109/TCST.2024.3494993","DOIUrl":null,"url":null,"abstract":"In this brief, we propose a novel real-time numerical algorithm for solving nonlinear model predictive control (NMPC) with convex-concave constraints, which arise in various practical applications. Instead of requiring full convergence for each problem at every sampling time, the proposed algorithm, called real-time iteration sequential convex programming (RTI-SCP), solves only one convex subproblem but iterates as the problem evolves. Compared with previous methods, the RTI-SCP adopts a more refined approach by linearizing only the concave components of the constraints. It retains and efficiently utilizes all the underlying convex structures, thereby transforming subproblems into structured forms that can be solved using the existing tools. In addition, to the best of our knowledge, the widely investigated eco-driving control strategy for autonomous vehicles is now formulated for the first time into a convex-concave programming problem with strong theoretical properties. Eventually, the experimental results demonstrate that the proposed strategy can improve computational efficiency and overall control performance, and it is suitable for real-time implementation.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 2","pages":"807-814"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10754640/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this brief, we propose a novel real-time numerical algorithm for solving nonlinear model predictive control (NMPC) with convex-concave constraints, which arise in various practical applications. Instead of requiring full convergence for each problem at every sampling time, the proposed algorithm, called real-time iteration sequential convex programming (RTI-SCP), solves only one convex subproblem but iterates as the problem evolves. Compared with previous methods, the RTI-SCP adopts a more refined approach by linearizing only the concave components of the constraints. It retains and efficiently utilizes all the underlying convex structures, thereby transforming subproblems into structured forms that can be solved using the existing tools. In addition, to the best of our knowledge, the widely investigated eco-driving control strategy for autonomous vehicles is now formulated for the first time into a convex-concave programming problem with strong theoretical properties. Eventually, the experimental results demonstrate that the proposed strategy can improve computational efficiency and overall control performance, and it is suitable for real-time implementation.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.