Mladen Čičić , Carlos Vivas , Carlos Canudas-de-Wit , Francisco R. Rubio
{"title":"Active Network Management via grid-friendly electromobility control for curtailment minimization","authors":"Mladen Čičić , Carlos Vivas , Carlos Canudas-de-Wit , Francisco R. Rubio","doi":"10.1016/j.conengprac.2025.106289","DOIUrl":null,"url":null,"abstract":"<div><div>We propose an integrated power and transportation system control framework, combining the power grid model with a macroscopic electromobility model including charging stations under V2G operation. In this framework, the electrical vehicles (EVs) act as energy storage, but also as additional virtual power grid links, transporting energy from one point to another. This new holistic approach is used as a basis for optimal control design seeking to provide Active Network Management, in order to minimize curtailment of renewable energy sources and loads at various ports of the network, while accounting for the structural limitation of the grid and other constraints necessary for the optimal operation of the EVs. The proposed control scheme is shown to be able to outperform uncoordinated EV charging in terms of total curtailment in various studied scenarios. Additionally, we study the case when public charging stations are able to incentivize or disincentivise EVs to use them, by dynamically varying their charging price throughout the day, and show that this additional control input can further reduce curtailment in certain scenarios.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"159 ","pages":"Article 106289"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000528","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose an integrated power and transportation system control framework, combining the power grid model with a macroscopic electromobility model including charging stations under V2G operation. In this framework, the electrical vehicles (EVs) act as energy storage, but also as additional virtual power grid links, transporting energy from one point to another. This new holistic approach is used as a basis for optimal control design seeking to provide Active Network Management, in order to minimize curtailment of renewable energy sources and loads at various ports of the network, while accounting for the structural limitation of the grid and other constraints necessary for the optimal operation of the EVs. The proposed control scheme is shown to be able to outperform uncoordinated EV charging in terms of total curtailment in various studied scenarios. Additionally, we study the case when public charging stations are able to incentivize or disincentivise EVs to use them, by dynamically varying their charging price throughout the day, and show that this additional control input can further reduce curtailment in certain scenarios.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.