Developed non-fullerene acceptors with modified BTPT-OD donor core: A DFT and TD-DFT methods to boost organic solar cell performances

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Walid Taouali , Amel Azazi , Rym Hassani , Entesar H. EL-Araby , Kamel Alimi
{"title":"Developed non-fullerene acceptors with modified BTPT-OD donor core: A DFT and TD-DFT methods to boost organic solar cell performances","authors":"Walid Taouali ,&nbsp;Amel Azazi ,&nbsp;Rym Hassani ,&nbsp;Entesar H. EL-Araby ,&nbsp;Kamel Alimi","doi":"10.1016/j.orgel.2025.107226","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, density functional theory (DFT) and time-dependent (TD) DFT were employed in order to conduct electronic structure predictions of four novel non-fullerene acceptors (NF2-NF5) generated from the recently synthesized acceptor BTPT-OD (NF1). We provided detailed information about charge transfer and optoelectronic properties of tailored structures, and we compared them to the reference compound. Compared to the energy gap of the reference molecule (2.09 eV), all developed molecules showed a smaller energy gap (2.00–2.08 eV). The created molecules, NF3 and NF4, exhibit high dipole moments of 8.902 D and 6.988 D, respectively, which may enhance the charge transfer rate. Maximum absorption of NF3-NF5 compounds (<em>λ</em><sub>max</sub>, 686.7–694.6 nm) revealed a red shift in absorption as compared to the primary molecule NF1 (<em>λ</em><sub>max</sub> = 676.9 nm). Based on the earlier research (J. Comput. Chem. 2023, 44, 2130–2148), we employed the recently modified Scharber plot to highlight the role of a narrower electronic gap in the proposed non-fullerene acceptors to enhance the power conversion efficiency. Among all tailored molecules, NF3 showed enhanced photovoltaic parameters; it exhibits a short circuit current density of J<sub>sc</sub> = 11.34 mA/cm<sup>2</sup>, an open circuit voltage of V<sub>OC</sub> = 1.09 V, and a power conversion efficiency of PCE = 5.35 %, while reference molecule photovoltaic parameters are J<sub>sc</sub> = 09.43 mA/cm<sup>2</sup>, V<sub>OC</sub> = 1.03 V, and PCE = 4.21 %.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"140 ","pages":"Article 107226"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000321","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, density functional theory (DFT) and time-dependent (TD) DFT were employed in order to conduct electronic structure predictions of four novel non-fullerene acceptors (NF2-NF5) generated from the recently synthesized acceptor BTPT-OD (NF1). We provided detailed information about charge transfer and optoelectronic properties of tailored structures, and we compared them to the reference compound. Compared to the energy gap of the reference molecule (2.09 eV), all developed molecules showed a smaller energy gap (2.00–2.08 eV). The created molecules, NF3 and NF4, exhibit high dipole moments of 8.902 D and 6.988 D, respectively, which may enhance the charge transfer rate. Maximum absorption of NF3-NF5 compounds (λmax, 686.7–694.6 nm) revealed a red shift in absorption as compared to the primary molecule NF1 (λmax = 676.9 nm). Based on the earlier research (J. Comput. Chem. 2023, 44, 2130–2148), we employed the recently modified Scharber plot to highlight the role of a narrower electronic gap in the proposed non-fullerene acceptors to enhance the power conversion efficiency. Among all tailored molecules, NF3 showed enhanced photovoltaic parameters; it exhibits a short circuit current density of Jsc = 11.34 mA/cm2, an open circuit voltage of VOC = 1.09 V, and a power conversion efficiency of PCE = 5.35 %, while reference molecule photovoltaic parameters are Jsc = 09.43 mA/cm2, VOC = 1.03 V, and PCE = 4.21 %.

Abstract Image

开发具有修饰BTPT-OD供体核心的非富勒烯受体:DFT和TD-DFT方法提高有机太阳能电池的性能
本研究采用密度泛函理论(DFT)和时间依赖(TD) DFT对最近合成的受体BTPT-OD (NF1)生成的四种新型非富勒烯受体(NF2-NF5)进行了电子结构预测。我们提供了定制结构的电荷转移和光电子特性的详细信息,并将它们与参考化合物进行了比较。与参比分子的能隙(2.09 eV)相比,所有发育分子的能隙都较小(2.00-2.08 eV)。所制备的分子NF3和NF4具有较高的偶极矩,分别为8.902 D和6.988 D,这可能提高了电荷转移速率。NF3-NF5化合物的最大吸收光谱(λmax, 686.7-694.6 nm)较初级分子NF1 (λmax = 676.9 nm)发生了红移。基于早期的研究(J. Comput。化学,2023,44,2130-2148),我们采用最近修改的Scharber图来强调在拟议的非富勒烯受体中更窄的电子间隙的作用,以提高功率转换效率。在所有定制分子中,NF3表现出增强的光伏参数;短路电流密度Jsc = 11.34 mA/cm2,开路电压VOC = 1.09 V,功率转换效率PCE = 5.35%,参考分子光伏参数Jsc = 09.43 mA/cm2, VOC = 1.03 V, PCE = 4.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信