Quantifying climate change-driven variations in projected wind condition in the Gulf of Guinea

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Adeola M. Dahunsi , Frederic Bonou , Olusegun A. Dada , Ezinvi Baloïtcha
{"title":"Quantifying climate change-driven variations in projected wind condition in the Gulf of Guinea","authors":"Adeola M. Dahunsi ,&nbsp;Frederic Bonou ,&nbsp;Olusegun A. Dada ,&nbsp;Ezinvi Baloïtcha","doi":"10.1016/j.dynatmoce.2025.101543","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding wind climate dynamics in the Gulf of Guinea (GoG) is critical for addressing climate-related challenges and supporting sustainable development in the region. This study evaluates the wind climate using observational buoy data from the PIRATA network and multiple General Circulation Models (GCMs) under historical and future Representative Concentration Pathway (RCP 8.5) scenarios. An ensemble dataset, constructed as the average of GCM outputs, was validated against PIRATA buoy measurements and demonstrated better performance to individual GCMs. The study revealed distinct temporal and spatial variability in wind conditions across the dry and rainy seasons during the baseline period (1961–2014). Projections under RCP 8.5 for mid-century (2026–2060) and end-century (2066–2100) consistently indicate increasing wind speeds, with the most significant changes projected during the rainy season. These findings highlight the critical role of ensemble modelling in mitigating biases inherent in individual datasets and its contribution to a robust understanding of wind dynamics in the region. The observed trends have significant implications for coastal upwelling, maritime safety, renewable energy development, and climate resilience strategies in the GoG. This study highlights the necessity of fine-scale spatio-temporal modelling to improve predictions and guide evidence-based adaptive strategies to mitigate climate change impacts on coastal ecosystems and vulnerable communities.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"110 ","pages":"Article 101543"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026525000181","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding wind climate dynamics in the Gulf of Guinea (GoG) is critical for addressing climate-related challenges and supporting sustainable development in the region. This study evaluates the wind climate using observational buoy data from the PIRATA network and multiple General Circulation Models (GCMs) under historical and future Representative Concentration Pathway (RCP 8.5) scenarios. An ensemble dataset, constructed as the average of GCM outputs, was validated against PIRATA buoy measurements and demonstrated better performance to individual GCMs. The study revealed distinct temporal and spatial variability in wind conditions across the dry and rainy seasons during the baseline period (1961–2014). Projections under RCP 8.5 for mid-century (2026–2060) and end-century (2066–2100) consistently indicate increasing wind speeds, with the most significant changes projected during the rainy season. These findings highlight the critical role of ensemble modelling in mitigating biases inherent in individual datasets and its contribution to a robust understanding of wind dynamics in the region. The observed trends have significant implications for coastal upwelling, maritime safety, renewable energy development, and climate resilience strategies in the GoG. This study highlights the necessity of fine-scale spatio-temporal modelling to improve predictions and guide evidence-based adaptive strategies to mitigate climate change impacts on coastal ecosystems and vulnerable communities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信