The functional organisation of the centromere and kinetochore during meiosis

IF 6 2区 生物学 Q1 CELL BIOLOGY
Lori B. Koch, Adele L. Marston
{"title":"The functional organisation of the centromere and kinetochore during meiosis","authors":"Lori B. Koch,&nbsp;Adele L. Marston","doi":"10.1016/j.ceb.2025.102486","DOIUrl":null,"url":null,"abstract":"<div><div>Meiosis generates gametes through a specialised cell cycle that reduces the genome by half. Homologous chromosomes are segregated in meiosis I and sister chromatids are segregated in meiosis II. Centromeres and kinetochores play central roles in instructing this specialised chromosome segregation pattern. Accordingly, kinetochores acquire meiosis-specific modifications. Here we contextualise recent highlights in our understanding of how centromeres and kinetochores direct the sorting of chromosomes into gametes via meiosis.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"94 ","pages":"Article 102486"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000249","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Meiosis generates gametes through a specialised cell cycle that reduces the genome by half. Homologous chromosomes are segregated in meiosis I and sister chromatids are segregated in meiosis II. Centromeres and kinetochores play central roles in instructing this specialised chromosome segregation pattern. Accordingly, kinetochores acquire meiosis-specific modifications. Here we contextualise recent highlights in our understanding of how centromeres and kinetochores direct the sorting of chromosomes into gametes via meiosis.
减数分裂过程中着丝粒和着丝粒的功能组织
减数分裂通过一个特殊的细胞周期产生配子,这个周期将基因组减少一半。同源染色体在减数分裂I中分离,姐妹染色单体在减数分裂II中分离。着丝粒和着丝点在指导这种特殊的染色体分离模式中起着核心作用。因此,着丝点获得减数分裂特异性修饰。在这里,我们对着丝粒和着丝点如何通过减数分裂指导染色体分选进入配子的理解中的最新亮点进行了背景分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信