Comprehensive allelic series analysis uncovers the novel function of the tomato FALSIFLORA gene in the cessation of floral meristem activity

IF 5.4 Q1 PLANT SCIENCES
Abraham S. Quevedo-Colmena , Wim H. Vriezen , Pieter G.A. Wesselink , José M. Pérez-Jiménez , Benito Pineda , Begoña García-Sogo , Trinidad Angosto , Vicente Moreno , Fernando J. Yuste-Lisbona , Rafael Lozano
{"title":"Comprehensive allelic series analysis uncovers the novel function of the tomato FALSIFLORA gene in the cessation of floral meristem activity","authors":"Abraham S. Quevedo-Colmena ,&nbsp;Wim H. Vriezen ,&nbsp;Pieter G.A. Wesselink ,&nbsp;José M. Pérez-Jiménez ,&nbsp;Benito Pineda ,&nbsp;Begoña García-Sogo ,&nbsp;Trinidad Angosto ,&nbsp;Vicente Moreno ,&nbsp;Fernando J. Yuste-Lisbona ,&nbsp;Rafael Lozano","doi":"10.1016/j.cpb.2025.100461","DOIUrl":null,"url":null,"abstract":"<div><div>Plants undergo continuous growth thanks to meristems, specialized groups of pluripotent stem cells that remain undifferentiated throughout the plant's life. Meristem transition from the vegetative to the reproductive phase heavily influences plant reproductive success and agricultural productivity. In tomato (<em>Solanum lycopersicum</em> L.), <em>FALSIFLORA</em> (<em>FA</em>), the orthologue of the Arabidopsis <em>LEAFY</em> gene, promotes floral transition by specifying floral meristem identity and regulating the expression of genes responsible for floral organ identity and development. This study expanded the <em>FA</em> allelic series by combining the screening of an EMS mutant collection with overexpression, silencing and CRISPR/Cas9 genome editing approaches, aimed to deepen the understanding of the functional role of <em>FA</em> during reproductive development. The phenotypic and molecular characterization of the <em>FA</em> allelic series revealed its multifaceted role in both early and late stages of floral ontogeny. Besides promoting floral transition and specifying floral meristem identity, <em>FA</em> also plays a role in inflorescence meristem maturation and termination, thereby regulating the inflorescence architecture. Furthermore, <em>FA</em> potentially exerts regulatory control over the expression of the <em>AGAMOUS</em> homolog (<em>TOMATO AGAMOUS1</em>, <em>TAG1</em>), which in turn may contribute to the deregulation of <em>WUSCHEL</em> (<em>SlWUS</em>) during floral development, underscoring its function in promoting carpel development and suppressing floral stem cell activity, thereby establishing floral determinacy. Our findings reveal for the first time the novel role of <em>FA</em> in the cessation of floral meristem activity in tomato, and demonstrate the value of mutant allelic series as powerful tools for elucidating gene functions and understanding the intricate molecular basis underlying biological processes.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"42 ","pages":"Article 100461"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662825000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plants undergo continuous growth thanks to meristems, specialized groups of pluripotent stem cells that remain undifferentiated throughout the plant's life. Meristem transition from the vegetative to the reproductive phase heavily influences plant reproductive success and agricultural productivity. In tomato (Solanum lycopersicum L.), FALSIFLORA (FA), the orthologue of the Arabidopsis LEAFY gene, promotes floral transition by specifying floral meristem identity and regulating the expression of genes responsible for floral organ identity and development. This study expanded the FA allelic series by combining the screening of an EMS mutant collection with overexpression, silencing and CRISPR/Cas9 genome editing approaches, aimed to deepen the understanding of the functional role of FA during reproductive development. The phenotypic and molecular characterization of the FA allelic series revealed its multifaceted role in both early and late stages of floral ontogeny. Besides promoting floral transition and specifying floral meristem identity, FA also plays a role in inflorescence meristem maturation and termination, thereby regulating the inflorescence architecture. Furthermore, FA potentially exerts regulatory control over the expression of the AGAMOUS homolog (TOMATO AGAMOUS1, TAG1), which in turn may contribute to the deregulation of WUSCHEL (SlWUS) during floral development, underscoring its function in promoting carpel development and suppressing floral stem cell activity, thereby establishing floral determinacy. Our findings reveal for the first time the novel role of FA in the cessation of floral meristem activity in tomato, and demonstrate the value of mutant allelic series as powerful tools for elucidating gene functions and understanding the intricate molecular basis underlying biological processes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信