A detailed multi-component heat configuration assessment for complex industrial plants through Monte Carlo simulations: A case study for the cement industry
Ian Wolde , Allan R. Starke , Alexandre K. da Silva , José M. Cardemil
{"title":"A detailed multi-component heat configuration assessment for complex industrial plants through Monte Carlo simulations: A case study for the cement industry","authors":"Ian Wolde , Allan R. Starke , Alexandre K. da Silva , José M. Cardemil","doi":"10.1016/j.seta.2025.104237","DOIUrl":null,"url":null,"abstract":"<div><div>The decarbonization of industrial plants involves the integration of cleaner and more efficient energy processes, which might include electrification, renewable energy sources, waste heat recovery, and thermal energy storage. The technical viability of each assisting technology is usually assessed through direct simulations of the integrated system, which makes evaluation often difficult. This study proposes a methodology for estimating the heat demands of different configurations of a generic cement plant, aiming to assess the fuel consumption for the several integration cases considered. The waste heat and the mass flow rate of the internal streams are considered variable parameters, which lead to 32 distinct integration cases and 16,000 plant simulations. The operating conditions are generated through a Monte Carlo approach, ensuring the probability distribution of the results. The waste heat measures increase the plant’s heat demand and hinder its efficiency. A linear regression for fuel heat demand shows results ranging from 113.72<!--> <!-->MW to 492.62<!--> <!-->MW.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"75 ","pages":"Article 104237"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138825000682","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The decarbonization of industrial plants involves the integration of cleaner and more efficient energy processes, which might include electrification, renewable energy sources, waste heat recovery, and thermal energy storage. The technical viability of each assisting technology is usually assessed through direct simulations of the integrated system, which makes evaluation often difficult. This study proposes a methodology for estimating the heat demands of different configurations of a generic cement plant, aiming to assess the fuel consumption for the several integration cases considered. The waste heat and the mass flow rate of the internal streams are considered variable parameters, which lead to 32 distinct integration cases and 16,000 plant simulations. The operating conditions are generated through a Monte Carlo approach, ensuring the probability distribution of the results. The waste heat measures increase the plant’s heat demand and hinder its efficiency. A linear regression for fuel heat demand shows results ranging from 113.72 MW to 492.62 MW.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.