Self-humidification characteristics of steady-state operation and startup for humidifier-free polymer electrolyte membrane fuel cell

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Ning Wang , Baobao Hu , Yiheng Pang , Zhiguo Qu , Yun Wang
{"title":"Self-humidification characteristics of steady-state operation and startup for humidifier-free polymer electrolyte membrane fuel cell","authors":"Ning Wang ,&nbsp;Baobao Hu ,&nbsp;Yiheng Pang ,&nbsp;Zhiguo Qu ,&nbsp;Yun Wang","doi":"10.1016/j.energy.2025.135174","DOIUrl":null,"url":null,"abstract":"<div><div>Escalating the self-humidification ability of polymer electrolyte membrane fuel cell is of paramount significance to automobile and portable applications, particularly for ambitious humidifier-free goal. In this study, detailed humidification mechanisms are explored for steady-state and startup scenarios through three-dimensional multiphase modeling. Model validations for different inlet humidities and current density evolutions of startup are strictly performed, five proposed operating strategies are quantitatively compared, in which the crucial influence of anode and cathode self-humidification cycles are evaluated. The dynamic characteristics of both preheating and self-heating modes during startup are also investigated under humidifier-free design. The results indicate that anode self-humidification cycle plays a more important role than the cathode one. The thin membrane fuel cell performance is insensitive to the anode relative humidity due to enhanced self-humidification. Additionally, the observed current density overshoot after startup is attributed to rapid oxygen consumption, followed by a gradual increase due to continuous electrolyte hydration. The fundamentals of dynamic self-humidification during different voltage/current-density startups are similar, determined by transient water accumulation and current density evolution. Moreover, self-heating mode shows lower output voltage due to sluggish catalyst activity, while it can alleviate the steep oxygen concentration drop during startup, compared with the preheating one.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"320 ","pages":"Article 135174"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225008163","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Escalating the self-humidification ability of polymer electrolyte membrane fuel cell is of paramount significance to automobile and portable applications, particularly for ambitious humidifier-free goal. In this study, detailed humidification mechanisms are explored for steady-state and startup scenarios through three-dimensional multiphase modeling. Model validations for different inlet humidities and current density evolutions of startup are strictly performed, five proposed operating strategies are quantitatively compared, in which the crucial influence of anode and cathode self-humidification cycles are evaluated. The dynamic characteristics of both preheating and self-heating modes during startup are also investigated under humidifier-free design. The results indicate that anode self-humidification cycle plays a more important role than the cathode one. The thin membrane fuel cell performance is insensitive to the anode relative humidity due to enhanced self-humidification. Additionally, the observed current density overshoot after startup is attributed to rapid oxygen consumption, followed by a gradual increase due to continuous electrolyte hydration. The fundamentals of dynamic self-humidification during different voltage/current-density startups are similar, determined by transient water accumulation and current density evolution. Moreover, self-heating mode shows lower output voltage due to sluggish catalyst activity, while it can alleviate the steep oxygen concentration drop during startup, compared with the preheating one.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信