Shuai Liu , Guilhem Pignol , Corinne Lagrost , Bingwei Mao , Philippe Hapiot , Jiawei Yan
{"title":"Mass transport and heterogeneous electron transfer in high-concentration electrolytes: From conventional to two-dimensional material electrodes","authors":"Shuai Liu , Guilhem Pignol , Corinne Lagrost , Bingwei Mao , Philippe Hapiot , Jiawei Yan","doi":"10.1016/j.coelec.2025.101667","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional materials in high-concentration electrolytes have emerged as promising candidates for studying heterogeneous electron transfer kinetics due to their diverse applications in energy storage and conversion. However, the existing theoretical frameworks and experimental techniques often fall short in accurately describing these complex systems. A comprehensive understanding of electron transfer processes at the electrode–electrolyte interface in high-concentration electrolytes is crucial for advancing our knowledge of interfacial electrochemical phenomena and refining theoretical models. This review summarizes recent efforts focusing on the heterogeneous electron transfer at the electrode–high-concentration electrolyte interfaces, particularly ionic liquids and deep eutectic solvents, and we briefly assess the limitations of existing kinetic studies and outline potential avenues with emphasizing the strengthen of scanning electrochemical microscopy in future research in this field.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101667"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000262","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional materials in high-concentration electrolytes have emerged as promising candidates for studying heterogeneous electron transfer kinetics due to their diverse applications in energy storage and conversion. However, the existing theoretical frameworks and experimental techniques often fall short in accurately describing these complex systems. A comprehensive understanding of electron transfer processes at the electrode–electrolyte interface in high-concentration electrolytes is crucial for advancing our knowledge of interfacial electrochemical phenomena and refining theoretical models. This review summarizes recent efforts focusing on the heterogeneous electron transfer at the electrode–high-concentration electrolyte interfaces, particularly ionic liquids and deep eutectic solvents, and we briefly assess the limitations of existing kinetic studies and outline potential avenues with emphasizing the strengthen of scanning electrochemical microscopy in future research in this field.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •