Attention Deficit Hyperactivity Disorder identification: FMRI data analyzed with CNN and seed-based approach

Anika Siamin Oyshi , Mohammad Hasan , Md. Khabir Uddin Ahamed , Md. Sydur Rahman , Md. Mahfuzul Haque , Mahmudul Alam
{"title":"Attention Deficit Hyperactivity Disorder identification: FMRI data analyzed with CNN and seed-based approach","authors":"Anika Siamin Oyshi ,&nbsp;Mohammad Hasan ,&nbsp;Md. Khabir Uddin Ahamed ,&nbsp;Md. Sydur Rahman ,&nbsp;Md. Mahfuzul Haque ,&nbsp;Mahmudul Alam","doi":"10.1016/j.dscb.2025.100198","DOIUrl":null,"url":null,"abstract":"<div><div>Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent mental disorder affecting both adults and children, frequently leading to academic difficulties. This study aims to improve the diagnosis of ADHD in children by using resting-state Functional Magnetic Resonance Imaging (fMRI) data. The method use seed coherence to identify functional connections between specific seed areas and all brain voxels, focusing on Default Mode Network (DMN) regions pertinent to the diagnosis of ADHD. Convolutional Neural Networks (CNNs) are utilized in classification tasks because of their capacity to learn intricate spatial hierarchies. The research utilizes fMRI scans from the ADHD 200 - Global Competitive dataset, comprising 776 subjects from three prominent data centers. The methodology entails data preparation, feature extraction via seed-based correlation, and classification with Convolutional Neural Networks (CNNs). Three classifiers were assessed: a Neural Network (Keras Sequential Model), a Support Vector Machine (SVM), and a Random Forest Classifier. The optimal outcome was achieved by the neural network, which harmonized precision, recall, and F1 scores, attaining an accuracy of 97 %. The SVM demonstrated considerable accuracy at 83 %, however the Random Forest Classifier exhibited a mere 50 % accuracy, underscoring the necessity for enhancement. These results underscore the merits and shortcomings of each classifier and offer suggestions for enhancement. The paper highlights the significance of Neural Networks for attaining precise and equitable forecasts, proposes enhancements for the Support Vector Machine, and stresses the imperative of optimizing the Random Forest Classifier. This study enhances ADHD diagnosis by methodically employing neuroimaging techniques and assessing several classifiers, leading to a reliable diagnostic system.</div></div>","PeriodicalId":72447,"journal":{"name":"Brain disorders (Amsterdam, Netherlands)","volume":"17 ","pages":"Article 100198"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain disorders (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666459325000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent mental disorder affecting both adults and children, frequently leading to academic difficulties. This study aims to improve the diagnosis of ADHD in children by using resting-state Functional Magnetic Resonance Imaging (fMRI) data. The method use seed coherence to identify functional connections between specific seed areas and all brain voxels, focusing on Default Mode Network (DMN) regions pertinent to the diagnosis of ADHD. Convolutional Neural Networks (CNNs) are utilized in classification tasks because of their capacity to learn intricate spatial hierarchies. The research utilizes fMRI scans from the ADHD 200 - Global Competitive dataset, comprising 776 subjects from three prominent data centers. The methodology entails data preparation, feature extraction via seed-based correlation, and classification with Convolutional Neural Networks (CNNs). Three classifiers were assessed: a Neural Network (Keras Sequential Model), a Support Vector Machine (SVM), and a Random Forest Classifier. The optimal outcome was achieved by the neural network, which harmonized precision, recall, and F1 scores, attaining an accuracy of 97 %. The SVM demonstrated considerable accuracy at 83 %, however the Random Forest Classifier exhibited a mere 50 % accuracy, underscoring the necessity for enhancement. These results underscore the merits and shortcomings of each classifier and offer suggestions for enhancement. The paper highlights the significance of Neural Networks for attaining precise and equitable forecasts, proposes enhancements for the Support Vector Machine, and stresses the imperative of optimizing the Random Forest Classifier. This study enhances ADHD diagnosis by methodically employing neuroimaging techniques and assessing several classifiers, leading to a reliable diagnostic system.

Abstract Image

注意缺陷多动障碍识别:用CNN和基于种子的方法分析FMRI数据
注意缺陷多动障碍(ADHD)是一种影响成人和儿童的普遍精神障碍,经常导致学习困难。本研究旨在利用静息状态功能磁共振成像(fMRI)数据提高儿童ADHD的诊断。该方法使用种子一致性来识别特定种子区域与所有脑素之间的功能连接,重点关注与ADHD诊断相关的默认模式网络(DMN)区域。卷积神经网络(cnn)由于其学习复杂空间层次的能力而被用于分类任务。这项研究利用了多动症200全球竞争数据集的功能磁共振成像扫描,该数据集包括来自三个著名数据中心的776名受试者。该方法需要数据准备,通过基于种子的相关性提取特征,并使用卷积神经网络(cnn)进行分类。评估了三种分类器:神经网络(Keras顺序模型),支持向量机(SVM)和随机森林分类器。神经网络达到了最佳结果,它协调了准确率、召回率和F1分数,达到了97%的准确率。支持向量机显示出相当高的准确率为83%,然而随机森林分类器显示出仅50%的准确率,强调了增强的必要性。这些结果突出了每种分类器的优缺点,并提出了改进建议。本文强调了神经网络对获得精确和公平的预测的重要性,提出了对支持向量机的改进,并强调了优化随机森林分类器的必要性。本研究通过系统地使用神经影像学技术和评估几种分类器来提高ADHD的诊断,从而形成一个可靠的诊断系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain disorders (Amsterdam, Netherlands)
Brain disorders (Amsterdam, Netherlands) Neurology, Clinical Neurology
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信