{"title":"Terrestrial characterization factors for bio- and fossil-based plastics: microplastics ingestion and additives release","authors":"Brais Vázquez-Vázquez , Massimo Lazzari , Almudena Hospido","doi":"10.1016/j.wasman.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>Only a few works have contributed to quantifying the potential impacts of mismanaged plastics at the end-of-life stage. The MarILCA working group has developed characterization factors (CFs) to include the aquatic compartment, however, the terrestrial compartment remains a methodological gap. This work contributes to the quantification of the potential impacts of polypropylene (PP) and low-density polyethylene (LDPE) as well as their potential market substitutes plastic biopolymers (BPs) (PHA- and PLA-based) in the terrestrial compartment. Emission-based CFs have been developed to quantify their impacts through physical effects on biota related to microplastic ingestion, and ecotoxicological effects due to additives release. Fate factors (FFs) were derived from Plastic Footprint Network data and studies on accelerated photooxidation, the primary degradation pathway in the terrestrial compartment. Effect factors (EFs) were developed by the USEtox recommendations based on literature data on the physical and ecotoxicological impacts related to microplastics ingestion and additives release. An exposure factor (XF) of 1 was applied, as the CFs integrate potential impacts without distinguishing between short- and long-term effects. The study found that additives pose a greater environmental risk than microplastics ingestion, with CFs 3 to 4 orders of magnitude higher in the terrestrial compartment and even higher in the aquatic compartment. It is, therefore, essential to consider both the terrestrial and aquatic compartments to understand the impact of plastic pollution comprehensively. Finally, the study also found that the CFs of BPs are close to petrochemical plastics, underling the importance of proper waste management for the environmental performance of BPs.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"196 ","pages":"Pages 106-114"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000571","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Only a few works have contributed to quantifying the potential impacts of mismanaged plastics at the end-of-life stage. The MarILCA working group has developed characterization factors (CFs) to include the aquatic compartment, however, the terrestrial compartment remains a methodological gap. This work contributes to the quantification of the potential impacts of polypropylene (PP) and low-density polyethylene (LDPE) as well as their potential market substitutes plastic biopolymers (BPs) (PHA- and PLA-based) in the terrestrial compartment. Emission-based CFs have been developed to quantify their impacts through physical effects on biota related to microplastic ingestion, and ecotoxicological effects due to additives release. Fate factors (FFs) were derived from Plastic Footprint Network data and studies on accelerated photooxidation, the primary degradation pathway in the terrestrial compartment. Effect factors (EFs) were developed by the USEtox recommendations based on literature data on the physical and ecotoxicological impacts related to microplastics ingestion and additives release. An exposure factor (XF) of 1 was applied, as the CFs integrate potential impacts without distinguishing between short- and long-term effects. The study found that additives pose a greater environmental risk than microplastics ingestion, with CFs 3 to 4 orders of magnitude higher in the terrestrial compartment and even higher in the aquatic compartment. It is, therefore, essential to consider both the terrestrial and aquatic compartments to understand the impact of plastic pollution comprehensively. Finally, the study also found that the CFs of BPs are close to petrochemical plastics, underling the importance of proper waste management for the environmental performance of BPs.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)