Selective directed graph convolutional network for skeleton-based action recognition

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chengyuan Ke , Sheng Liu , Yuan Feng , Shengyong Chen
{"title":"Selective directed graph convolutional network for skeleton-based action recognition","authors":"Chengyuan Ke ,&nbsp;Sheng Liu ,&nbsp;Yuan Feng ,&nbsp;Shengyong Chen","doi":"10.1016/j.patrec.2025.02.020","DOIUrl":null,"url":null,"abstract":"<div><div>Skeleton-based action recognition has gained significant attention due to the lightweight and robust nature of skeleton representations. However, the feature extraction process often misses subtle action cues, making it challenging to differentiate between similar actions and leading to misclassification. To address this issue, we propose a Selective Directed Graph Convolutional Network (SD-GCN) that decouples features at varying granularities to enhance sensitivity to subtle actions. Specifically, we introduce a Dynamic Topology Generation (DTG) module, which dynamically constructs a new topological structure by focusing on key local joints. This reduces the influence of dominant global features on subtle ones, thereby amplifying fine-grained motion features and improving the distinction between similar actions. Additionally, we present an Attention-guided Group Fusion (AGF) module that selectively evaluates and fuses local motion features of the skeleton while incorporating global skeletal features to capture contextual relationships among all joints. We validated the effectiveness of our method on three benchmark datasets, and experimental results demonstrate that our model not only outperforms existing methods in terms of accuracy but also excels at distinguishing similar actions.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"190 ","pages":"Pages 141-146"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525000625","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Skeleton-based action recognition has gained significant attention due to the lightweight and robust nature of skeleton representations. However, the feature extraction process often misses subtle action cues, making it challenging to differentiate between similar actions and leading to misclassification. To address this issue, we propose a Selective Directed Graph Convolutional Network (SD-GCN) that decouples features at varying granularities to enhance sensitivity to subtle actions. Specifically, we introduce a Dynamic Topology Generation (DTG) module, which dynamically constructs a new topological structure by focusing on key local joints. This reduces the influence of dominant global features on subtle ones, thereby amplifying fine-grained motion features and improving the distinction between similar actions. Additionally, we present an Attention-guided Group Fusion (AGF) module that selectively evaluates and fuses local motion features of the skeleton while incorporating global skeletal features to capture contextual relationships among all joints. We validated the effectiveness of our method on three benchmark datasets, and experimental results demonstrate that our model not only outperforms existing methods in terms of accuracy but also excels at distinguishing similar actions.

Abstract Image

用于基于骨骼的动作识别的选择性有向图卷积网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信